Диммирование драйверов. Аргос драйвер


Диммирование драйверов

Возможность регулирования светового потока от искусственных источников света позволяет: экономить электроэнергию, экономить ресурс источников света, получить необходимый художественный эффект.

Снижение уровня освещения в помещениях, когда они не используются, или когда в помещение попадает естественный свет, позволяет значительно экономить материальные и энергоресурсы. Возможность зонального динамического изменения освещения позволяет получить художественные/маркетинговые акценты, привлечь внимание к деталям или скрыть их. Использование регулирования светового потока по сигналам датчиков освещенности и присутствия, кроме экономии ресурсов, позволяют получить эффект интерактивности и интеллектуальности пространства.

При освещении пространств искусственными источниками света эффективными и доступными методами регулирования уровня освещенности являются два: регулирования количества источников света задействованных в освещении (включенных) и регулирование светового потока излучаемого источниками света.

Первый метод в виде простейшей реализации знаком нам по люстрам в квартирах, в которых многоклавишным (в основном двух) выключателем можно было получить несколько уровней освещения в комнате. Для больших промышленных и коммерческих помещений этот метод превращается в разделение всего количества используемых светильников на группы так, что бы при работе любого количества групп освещение оставалось максимально равномерным, а количество уровней яркости отвечало требованиям. Этот метод не всегда качественно реализуем, или его реализация экономически неэффективна. Так, наиболее равномерное освещение получается большим количеством маломощных источников света, а регулирование освещения получается без значительных перепадов уровня освещения по площади. Но в то же время, когда замена нескольких маломощных источников света одним мощным даёт как выигрыш в стоимости светильников, так и в эффективности освещения, отключение нескольких таких светильников способно кардинально нарушить равномерность освещения.

В связи с явными недостатками первого метода регулирования, набирает популярность второй метод – регулирование светового потока испускаемого светильником. Этот метод может иметь несколько различных по сути реализаций: изменение количества задействованных светоизлучающих элементов в светильнике, изменение яркости свечения элементов, прерывистое свечение элементов (ШИМ регулирование). В первом варианте по сути реализована идея с разделением источников света на группы и имеет два основных недостатка: ограниченное количество уровней яркости и при сложной диаграмме направленности источника света, невозможность её воспроизведения во всём диапазоне регулирования яркости. Второй и третий варианты представляют собой регулирование подводимой мощности к излучающим элементам двумя различными методами, подробнее которые рассмотрим позднее.

Диммер в прямом русском переводе следует понимать как «регулятор света». В простейшем виде многие уже встречались с диммерами еще в светильниках с лампами накаливания. Такие приборы позволяли плавно менять яркость свечения настольной лампы, люстры и т. п. Классический (тиристорный) диммер регулирует количество энергии передаваемое от сети электроснабжения к источнику света. С появлением источников света с блоками питания (такие как светодиодные, люминесцентные и т. д.) использование классических диммеров стало сопровождаться сложностями, и большая часть современных источников света с классическим диммером работают не корректно. Следует признать, что в бытовом классе приборов, некоторые производители выпускают источники питания светодиодов, диммируемые классическим диммером.

Дальнейшее развитие диммеров привело их к двум современным типам: включаемые между источником питания и нагрузкой (светодиодами) и управляющие источником питания. Первый тип прямо регулирует количество энергии, передаваемой от источника питания к нагрузке, и, в связи со специфическими особенностями, применяется в основном в источниках света на фиксированное напряжение (светодиодные ленты и т. п.) , в то время как для источников света с стабилизированным током через светодиоды в основном используется второй тип.

Первый тип диммеров в основном использует ШИМ регулирование, при котором энергия от источника к нагрузке подаётся импульсами, шириной которых и определяется количество энергии от минимальной, когда импульсов нет (или они очень малы по длительности) до максимальной, когда импульсы сливаются или паузы между ними минимально короткие. Во втором случае используется как ШИМ-регулирование, так и регулирование тока. Рассмотрим оба.

Белый светодиод имеет такой недостаток, как зависимость цветового оттенка от тока протекающего через него (от яркости). Так при снижении тока ниже номинального светодиод «желтеет», а при повышении – «синеет». Это связано с тем, что полупроводниковый кристалл в белом светодиоде излучает синий (чаще всего) свет, а нанесённый на него люминофор преобразовывает часть его в другие цвета от красного до зелёного. В итоге, на выходе из диода часть синего света от кристалла смешивается со светом от люминофора в правильных пропорциях в белый свет заданной цветовой температуры. При регулировании количества света от кристалла эти пропорции нарушаются.

Таким образом, при регулировании освещения изменением тока через светодиоды, кроме изменения количества света, получается и сопутствующее изменение цвета. При регулировании света ШИМ, то есть подачей на светодиоды часто повторяющихся импульсов постоянной амплитуды (но регулируемой ширины) светодиод работает на номинальном токе, но меньшее время и цветового сдвига нет. Следует заметить, что этот метод диммирования при таком явном преимуществе и в некоторых случаях при большей простоте реализации имеет и явные недостатки, такие как стробоскопические эффекты (очень опасные в промышленности), повышенная утомляемость зрения и высокий уровень излучаемых помех. Выше перечисленное с учетом снижения эффектов цветовых сдвигов у современных диодов привело к тому, что ШИМ-регулирование используется всё реже, а регулирование тока всё чаще.

На данный момент все диммируемые светодиодные драйверы производства Аргос-Электрон регулируют ток, протекающий через светодиоды. Такие светодиодные драйверы изготавливаются как в герметичном, так и в негерметичном исполнении. У негерметичных драйверов увеличено количество контактов в выходной колодке, а у герметичных отдельным шнуром добавлен дополнительный вывод управления.

Драйвер ИПС50-350ТУ IP20

Фрагмент корпуса драйвера ИПС50-350ТУ (крупно выходная колодка).

Фрагмент корпуса герметичного драйвера (увеличена выходная часть).

Внутренняя схема входа диммирования драйверов в исполнеии IP20 (примерная).

В герметичных драйверах нет переключателя SB1.

Для подключения к драйверу управляющего устройства используется три цепи: +10V, +DIM и -DIM. Регулирование выходного тока осуществляется изменением напряжения на выводе +DIM относительно -DIM в пределах 0 – 10 вольт. При напряжении ниже примерно 1 вольта, драйвер снижает выходную мощность до нуля, а при напряжениях порядка 9,5 – 10 вольт выходная мощность максимальна. Вывод +DIM допускает подачу напряжения до 12 вольт. Вывод +10V используется при регулировании с помощью внешнего переменного резистора или при ШИМ-регулировании, а так же позволяет включить драйвер на полную мощность без дополнительных схем.

Для включения герметичного драйвера на максимальную мощность без схемы управления необходимо соединить между собой выводы +DIM и +10V, а в негерметичном драйвере достаточно замкнуть переключатель рядом с выходной колодкой.

Зависимость выходной мощности драйвера от напряжения на входе диммирования (отнормировано к максимальной мощности).

Допустимый диапазон напряжений на выводе +DIM                                  0 – 12 В.

Входное сопротивление между +DIM и -DIM                                      не менее 240 кОм.

Максимальный вытекающий ток вывода +10V                                не более 100 мкА.

Изменять потенциал на выводах диммирования можно несколькими способами.

  Регулирование при помощи переменного резистора (рекомендуемый номинал 100 кОм)

Регулирование при помощи переменного резистора номиналом 100 кОм. Для этого варианта может быть использован, например, переменный резистор, установленный в корпус классического диммера или самодельный регулятор. Следует обратить внимание на то, что максимальная выходная мощность драйвера в этой схеме будет составлять 95 – 100% от паспортной, что связано с особенностями работы драйвера в этой схеме.

Пример классического (тиристорного) диммера.

Регулирование при помощи источника напряжения 0 – 10 вольт.

Во втором случае может быть использован любой регулируемый источник напряжения, выходы промышленных датчиков или промышленных контроллеров стандарта 0-10 В (1-10 В), а так же бытовые панели управления (например «Панель сенсорная LN-120E-IN»). Напряжение подаётся между +DIM и -DIM, а цепи +10V и +DIM не должны быть замкнуты между собой.

Панель сенсорная LN-120E-IN

Регулирование при помощи стандартного выхода «открытый коллектор».

В третьем случае возможно использование как промышленных контроллеров с выходом типа «открытый коллектор», так и использование диммеров для светодиодных лент 12 вольт. От регулятора на вход диммирования драйвера можно подавать импульсы ШИМ амплитудой 10 – 12 вольт между +DIM и -DIM (цепи +10V и +DIM не должны быть соединены). В таком случае с увеличением ширины импульсов выходная мощность драйвера будет расти.

Ключ типа «открытый коллектор» следует подключать между -DIM и +DIM, а выводы +DIM и +10V замкнуть между собой. В такой схеме включения увеличение времени открытия транзистора будет приводить к снижению выходного тока. Для смены зависимости выходной мощности от ширины импульсов на противоположную необходимо ключ ШИМ-регулятора включить между +10V и +DIM, а между +DIM и -DIM дополнительно установить резистор 100 — 500 кОм.

Во всех случаях для корректной работы драйвера частота ШИМ должна быть не менее 300 герц (Fшим>300Гц).

Если нагрузочная способность выхода контроллера будет недостаточна для управления необходимым количеством драйверов, то на некоторых из них можно разомкнуть цепи +DIM и +10V (см. схему).

Пример диммера для светодиодных лент 12 вольт.

Использование для управления диммера светодиодных лент 12 вольт.

Если использовать контроллер RGB (RGBW) совместно с диммируемыми драйверами, нагруженными на панели соответствующих цветов, то можно получить полноцветное регулирование освещение (например для фасадов).

Поскольку вход диммирования соответствует по уровням сигналов промышленному стандарту 0-10В, толерантен к подаче 12 вольт и имеет высокое входное сопротивление, управлять диммером может очень широкий спектр промышленных и бытовых устройств от RGB контроллеров светодиодных лент и переходников DALI-0-10V до промышленных датчиков и контроллеров.

Управление драйвером контактами переключателей или датчиков.

В случае необходимости, диммируемым драйвером можно управлять при помощи контактных устройств приборов автоматики, датчиков (движения, света и т. д.) или выключателей. Для этого возможно использования одной из двух схем:

1) для того что бы драйвер выключался при замыкании контактов выключателя, необходимо соединить цепи +10V и +DIM между собой, а выключатель подключить между +DIM и -DIM;

2) для того что бы драйвер включался при замыкании контактов выключателя, выключатель следует включить между +10V и +DIM, а между +DIM и -DIM дополнительно установить резистор 100 — 500 кОм.

Драйверы могут быть объединены по цепям диммирования, если они не включены на одну нагрузку. Запрещается объединять цепи диммирования драйверов, работающих на общую нагрузку. На один диммер может быть включено более 40 драйверов. Не рекомендуем использовать линию диммирования длиннее 50 метров.

Для использования совместно с драйверами производства Аргос-Электрон, могут подойти такие приборы регулирования:

Arlight LN120E.

Arlight DIM105A

Arlight LN015

Arlight ROTARY SR-2202-IN

Arlight LN016

Arlight SENS CT-201-IN

(обратите внимание на питание самой панели)

В качестве преобразователей стандарта DALI мы обратили внимание на такие устройства:

LUNATONE 86458508-PWM DALI auf 0-10V PWM Interface

CONVERTOR-DALI-0-10V (http://ru.aliexpress.com...)

Часто задаваемые вопросы:

Можно ли использовать тиристорный диммер для управления димируемыми драйверами производства Аргос-Электрон?

Нет.

Как зависти выходная мощность драйвера от напряжения на входе диммирования?

Выходная мощность растёт с ростом напряжения между +DIM и -DIM.

Можно ли использовать для управления драйвером ШИМ-регулирование, каковы должны быть его параметры?

Для регулирования мощности во всём диапазоне, подаваемые импульсы ШИМ должны иметь амплитуду 10 – 12 вольт Такие ипульсы подаются между +DIM и -DIM. Если используется «открытый коллектор», он подключается между +DIM и -DIM, а +DIM и +10V необходимо замкнуть между собой. Возможно подключение ключа ШИМ между +DIM и +10V, между +DIM и -DIM необходимо подключить резистор номиналом 100 – 500 кОм. Такое подключение позволит изменить зависимость выходной мощности от ширины импульсов на противоположную. Во всех случаях несущая частота ШИМ должна быть выше 300 герц.

Как включить драйвер на полную мощность, если у меня нет диммера?

Если у вас герметичный драйвер, вам необходимо соединить между собой два провода в шнуре диммирования жёлто-зелёный и коричневый (цепи +10V и +DIM), а синий провод оставить не подключенным (-DIM). Если у вас драйвер в исполнении IP20, переведите переключатель рядом с выходной колодкой в положение ON.

Как мне подключить выключатель, что бы при его замыкании светильник выключался?

Соедините цепи +DIM и +10V, а выключатель подключите между +DIM и -DIM.

Как мне подключить выключатель, что бы при его замыкании светильник включался?

Подключите резистор номиналом 100 – 500 кОм между +DIM и -DIM, а выключатель подключите между +DIM и +10V.

www.argos-trade.com

конкретные объекты применение светильников ЖКХ, светодиодных драйверов и светодиодных модулей

Лучшие российские региональные производители светодиодных светильников, использующие источники питания светодиодов производства "Аргос-Электрон"

Добавить свой объект

Печатная версия

Выбранное количество по фильтру: 515

Сортировать по: Дате Производителю (А-Я) ТОП

Просмотрено: 56746 раз

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: Освещение ЖК "Мои Териоки" г. Зеленогорск

Город: Зеленогорск

Подробнее

Тип объекта: Офисно-административные здания

Название объекта: LED светильники для офиса АО "РПКБ"

Город: Санкт-Петербург

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: Гостиница "Парк Инн"

Город: Великий Новгород

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: ВДНХ

Город: Москва

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: ЗАО "Набережночелнинский трубный завод "ТЭМ-ПО"

Город: Набережные Челны

Подробнее

Тип объекта: Офисно-административные здания

Название объекта: Конференцзал здания заводоуправления ОАО «ПМЗ»

Город: Пермь

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: Орел, ул. Тургенева

Город: Орел

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: Ладожский вокзал города Санкт-Петербурга

Город: Санкт-Петербург

Подробнее

Тип объекта: Розничная торговля

Название объекта: Освещение прилегающей территории магазина Магнит

Город: Ярославль

Подробнее

Тип объекта: Офисно-административные здания

Название объекта: БДТ им. Г. А. Товстоногова

Город: Санкт-Петербург

Подробнее

Тип объекта: Промышленность

Название объекта: Производственная площадка завода ИНКАБ

Город: Пермь

Подробнее

Тип объекта: Промышленность

Название объекта: Фанерный комбинат "СВЕЗА Уральский"

Город: Пермский край, Нытвенский р-н, пос. Уральский

Подробнее

Тип объекта: Освещение дорог, улиц, парков, садов, скверов, набережных, дворов

Название объекта: Освещение участка дороги Ярославль - Кострома

Город: Кострома

Подробнее

Тип объекта: Промышленность

Название объекта: Балтийский судостроительный завод

Город: Санкт-Петербург

Подробнее

Тип объекта: Многоквартирные дома

Название объекта: Многоквартирный дом г. Муравленко

Город: Муравленко

Подробнее

www.argos-trade.com

Диммируемые драйверы

Диммируемый драйвер для светодиодов

 

Диммируемый драйвер для светодиодов позволяет: экономить электроэнергию, экономить ресурс источников света, получить необходимый художественный эффект.

Снижение уровня освещения в помещениях, когда они не используются, или когда в помещение попадает естественный свет, позволяет значительно экономить материальные и энергоресурсы. Использование диммируемого драйвера для светодиода дает возможность зонального динамического изменения освещения и позволяет получить художественные/маркетинговые акценты, привлечь внимание к деталям или скрыть их. Использование блока питания диммируемого для светодиодов позволяет регулировать световой поток по сигналам датчиков освещенности и присутствия, кроме экономии ресурсов, позволяет получить эффект интерактивности и интеллектуальности пространства.

 

При освещении пространств искусственными источниками освещения эффективными и доступными методами регулирования уровня освещенности являются два: регулирования количества источников света задействованных в освещении (включенных) и использование драйверов с диммированием.

Первый метод знаком нам по люстрам в квартирах, в которых многоклавишным выключателем можно было получить несколько уровней освещения в комнате. Для больших промышленных и коммерческих помещений этот метод  превращается в разделение всего количества используемых приборов на группы так, чтобы при работе любого количества групп освещение оставалось максимально равномерным, а количество уровней яркости отвечало техническим требованиям. Этот метод не всегда качественно реализуем, или его реализация экономически неэффективна. Так, наиболее равномерное освещение получается большим количеством маломощных источников света, а регулирование освещения получается без значительных перепадов уровня освещения по площади. Но в то же время, когда замена нескольких маломощных приборов одним мощным даёт как выигрыш в стоимости светильников, так и в эффективности освещения, отключение нескольких таких светильников способно кардинально нарушить равномерность освещения.

В связи с явными недостатками первого метода регулирования, набирает популярность второй метод – драйвер с диммированием. Варианты реализаций: изменение количества светоизлучающих элементов в светильнике, изменение яркости свечения элементов, прерывистое свечение элементов (ШИМ регулирование). В первом варианте реализована идея с разделением источников на группы, она имеет два недостатка: ограниченное количество уровней яркости и, при сложной диаграмме направленности источника света, невозможность её воспроизведения во всём диапазоне регулирования яркости. Второй и третий варианты представляют собой регулирование подводимой мощности к излучающим элементам двумя различными методами.

 

Диммируемый драйвер для светодиодов: возникновение

 

Диммер в прямом русском переводе следует понимать как «регулятор». В простейшем виде многие уже встречались с диммерами еще в светильниках с лампами накаливания. Такие приборы позволяли плавно менять яркость свечения настольной лампы, люстры и т. п. Классический (тиристорный) диммер регулирует количество энергии, передаваемое от сети электроснабжения к источнику света. С появлением моделей с блоками питания (такие как светодиодные, люминесцентные и т. д.) использование классических диммеров стало сопровождаться сложностями, и большая часть современных источников света с классическим диммером работают некорректно. Постепенно совершился переход к диммируемым блокам питания для светодиодов. Следует признать, что в бытовом классе приборов, некоторые производители выпускают источники питания светодиодов, диммируемые классическим диммером (в англоязычной литературе встречается название leddimmingdriver).

 

Диммируемый светодиодный драйвер: развитие и типы

 

Дальнейшее развитие диммеров привело их к двум современным типам: включаемые между источником питания и нагрузкой (светодиодами) и управляющие источником питания. Первый тип прямо регулирует количество энергии, передаваемой от источника питания к нагрузке, и, в связи со специфическими особенностями, применяется в основном в источниках света на фиксированное напряжение (светодиодные ленты и т. п.), в то время как для источников света с стабилизированным током через светодиоды в основном используется второй тип.

Первый тип диммеров в основном использует ШИМ регулирование, при котором энергия от источника к нагрузке подаётся импульсами, шириной которых и определяется количество энергии от минимальной, когда импульсов нет (или они очень малы по длительности) до максимальной, когда импульсы сливаются или их паузы минимально короткие. Во втором случае используется как ШИМ-регулирование, так и регулирование тока. Рассмотрим оба.

Белый светодиод имеет такой недостаток, как зависимость цветового оттенка от тока протекающего через него (от яркости). Так при снижении тока ниже номинального светодиод «желтеет», а при повышении – «синеет». Это связано с тем, что полупроводниковый кристалл в белом светодиоде излучает синий (чаще всего) свет, а нанесённый на него люминофор преобразовывает часть его в другие цвета от красного до зелёного. В итоге, на выходе из диода часть синего света от кристалла смешивается со светом от люминофора в правильных пропорциях в белый свет заданной цветовой температуры. При регулировании количества света от кристалла эти пропорции нарушаются.

Таким образом, при регулировании освещения изменением тока через светодиоды, кроме изменения яркости освещения, получается и сопутствующее изменение цвета. При регулировании света ШИМ, то есть подачей на светодиоды часто повторяющихся импульсов постоянной амплитуды (но регулируемой ширины) светодиод работает на номинальном токе, но меньшее время и цветового сдвига нет. Следует заметить, что этот метод диммирования при таком явном преимуществе и в некоторых случаях при большей простоте реализации имеет и явные недостатки, такие как стробоскопические эффекты (очень опасные в промышленности), повышенная утомляемость зрения и высокий уровень излучаемых помех. Выше перечисленное с учетом снижения эффектов цветовых сдвигов у современных диодов привело к тому, что ШИМ-регулирование используется всё реже, а регулирование тока всё чаще.

 

На данный момент все драйверы с диммированием для светодиодов производства Аргос-Электрон регулируют ток, протекающий через светодиоды. Такие диммируемые светодиодные драйверы изготавливаются как в герметичном, так и в негерметичном исполнении. У негерметичных LED-драйверов диммируемых увеличено количество контактов в выходной колодке, а у герметичных отдельным шнуром добавлен дополнительный вывод управления.

 

Блок питания ИПС50-350ТУ IP20

 

Фрагмент корпуса блока питания ИПС50-350ТУ (крупно выходная колодка).

 

Фрагмент корпуса герметичного блока питания (увеличена выходная часть).

 

      Внутренняя схема входа диммирования драйверов в исполнении IP20 (примерная).

В герметичных драйверах нет переключателя SB1.

 

Для подключения к блоку питания управляющего устройства используется три цепи: +10V, +DIM и -DIM. Регулирование выходного тока осуществляется изменением напряжения на выводе +DIM относительно -DIM в пределах 0 – 10 вольт. При напряжении ниже примерно 1 вольта, блок питания снижает выходную мощность до нуля, а при напряжениях порядка 9,5 – 10 вольт выходная мощность максимальна. Вывод +DIM допускает подачу напряжения до 12 вольт. Вывод +10V используется при регулировании с помощью внешнего переменного резистора или при ШИМ-регулировании, а так же позволяет включить драйвер на полную мощность без дополнительных схем.

Для включения герметичного драйвера на максимальную мощность без схемы управления  необходимо соединить выводы +DIM и +10V, а в негерметичном блоке достаточно замкнуть переключатель рядом с выходной колодкой.

 

Зависимость выходной мощности драйвера от напряжения на входе диммирования (отнормировано к максимальной мощности).

 

Допустимый диапазон напряжений на выводе +DIM    0 – 12 В.

Входное сопротивление у +DIM и -DIM                 не менее 240 кОм.

Максимальный вытекающий ток вывода +10V не более 100 мкА.

 

Изменять потенциал на выводах диммирования можно несколькими способами.

 

      Регулирование при помощи переменного резистора (рекомендуемый номинал 100 кОм)

 

Регулирование при помощи переменного резистора номиналом 100 кОм. Для этого варианта может быть использован, например, переменный резистор, установленный в корпус классического диммера или самодельный регулятор. Следует обратить внимание на то, что максимальная выходная мощность драйвера в этой схеме будет составлять 95 – 100% от паспортной, что связано с особенностями работы драйвера в этой схеме.

 

Пример классического (тиристорного) диммера.

 

Регулирование при помощи источника напряжения 0 – 10 вольт.

 

Во втором случае может быть использован любой регулируемый источник напряжения, выходы промышленных датчиков или промышленных контроллеров стандарта 0-10 В (1-10 В), а так же бытовые панели управления (например «Панель сенсорная LN-120E-IN»). Напряжение подаётся на +DIM и -DIM, а цепи +10V и +DIM не должны быть замкнуты между собой.

 

Панель сенсорная LN-120E-IN

 

      Регулирование при помощи стандартного выхода «открытый коллектор».

 

В третьем случае возможно использование как промышленных контроллеров с выходом типа «открытый коллектор», так и использование диммеров для светодиодных лент 12 вольт. От регулятора на вход диммирования драйвера можно подавать импульсы ШИМ амплитудой 10 – 12 вольт между (далее обозначение знаком /) +DIM и -DIM (цепи +10V и +DIM не должны быть соединены). В таком случае с увеличением ширины импульсов выходная мощность драйвера будет расти.

Ключ типа «открытый коллектор» следует подключать –DIM/+DIM, а выводы +DIM и +10V замкнуть между собой. В такой схеме включения увеличение времени открытия транзистора будет приводить к снижению выходного тока. Для смены зависимости выходной мощности от ширины импульсов на противоположную необходимо ключ ШИМ-регулятора включить +10V/ +DIM, а +DIM/-DIM- дополнительно установить резистор 100 — 500 кОм.

Во всех случаях для корректной работы драйвера частота ШИМ должна быть не менее 300 герц (Fшим>300Гц).

Если нагрузочная способность выхода контроллера будет недостаточна для управления необходимым количеством драйверов, то на некоторых из них можно разомкнуть цепи +DIM и +10V (см. схему).

 

Пример диммера для светодиодных лент 12 вольт.

 

      Использование для управления диммера светодиодных лент 12 вольт.

 

Если использовать контроллер RGB (RGBW) совместно с диммируемыми драйверами, нагруженными на панели соответствующих цветов, то можно получить полноцветное регулирование освещение (например для фасадов).

 

Поскольку вход диммирования соответствует по уровням сигналов промышленному стандарту 0-10В, толерантен к подаче 12 вольт и имеет высокое входное сопротивление,  управлять диммером может очень широкий спектр промышленных и бытовых устройств от RGB контроллеров светодиодных лент и переходников DALI-0-10V до промышленных датчиков и контроллеров.

 

Управление драйвером контактами переключателей или датчиков.

 

В случае необходимости, диммируемым драйвером можно управлять при помощи контактных устройств приборов автоматики, датчиков (движения, света и т. д.) или выключателей. Для этого возможно использования одной из двух схем:

1) для того что бы драйвер выключался при замыкании контактов выключателя, необходимо соединить цепи +10V и +DIM, а выключатель -  +DIM/ -DIM;

2) для того что бы драйвер включался при замыкании контактов выключателя, выключатель следует включить +10V/+DIM, а +DIM/ -DIM дополнительно установить резистор 100 — 500 кОм.

 

Драйверы могут быть объединены по цепям диммирования, если они не включены на одну нагрузку. Запрещается объединять цепи диммирования драйверов, работающих на общую нагрузку. На один диммер может быть включено более 40 драйверов. Не рекомендуем использовать линию диммирования длиннее 50 метров.

 

Для использования совместно с драйверами производства Аргос-Электрон, могут подойти такие приборы регулирования:

Arlight LN120E.

Arlight DIM105A

Arlight LN015

Arlight ROTARY SR-2202-IN

Arlight LN016

ArlightSENSCT-201-IN

(обратите внимание на питание самой панели)

 

В качестве преобразователей стандарта DALI мы обратили внимание на такие устройства:

LUNATONE 86458508-PWM DALI auf 0-10V PWM Interface

CONVERTOR-DALI-0-10V

 

Часто задаваемые вопросы:

 

Можно ли использовать тиристорный диммер для управления димируемыми драйверами производства Аргос-Электрон?

Нет.

 

Как зависти выходная мощность драйвера от напряжения на входе диммирования?

Выходная мощность растёт с напряжением +DIM/ -DIM.

 

Можно ли использовать для управления драйвером ШИМ-регулирование, каковы должны быть его параметры?

Для регулирования мощности во всём диапазоне, подаваемые импульсы ШИМ должны иметь амплитуду 10 – 12 вольт Такие ипульсы подаются на +DIM и -DIM. Если используется «открытый коллектор», он подключается +DIM/ -DIM, а +DIM и +10Vнеобходимо замкнуть. Возможно подключение ключа ШИМ +DIM/+10V, +DIM /-DIM необходимо подключить резистор номиналом 100 – 500 кОм. Такое подключение позволит изменить зависимость выходной мощности от ширины импульсов на противоположную. Во всех случаях несущая частота ШИМ должна быть выше 300 герц.

 

Как включить драйвер на полную мощность, если у меня нет диммера?

Если у вас герметичный драйвер, вам необходимо соединить между собой два провода в шнуре диммирования жёлто-зелёный и коричневый (цепи +10V и +DIM), а синий провод оставить не подключенным (-DIM). Если у вас драйвер в исполнении IP20, переведите переключатель рядом с выходной колодкой в положение ON.

 

Как мне подключить выключатель, что бы при его замыкании светильник выключался?

Соедините цепи +DIM и +10V, а выключатель подключите +DIM/-DIM.

 

Как мне подключить выключатель, что бы при его замыкании светильник включался?

Подключите резистор номиналом 100 – 500 кОм +DIM/ -DIM, а выключатель подключите +DIM/+10V.

 

 

www.argos-trade.com

Что означают параметры, указанные на корпусе драйвера

На верхнюю поверхность корпуса драйвера при изготовлении наносится маркировка. Маркировка включает в себя: наименование драйвера, расположение и назначение выводов, информация о производителе, самая горячая точка прибора, а также таблица параметров драйвера.

Lamp Pin, Вт Pout max, Вт Uп, В Fп, Гц Iout, А КПД Uout, В Uout xx, В λ Ta, °C
LED 47 42 176-264 50-60 0,7 >88% 28..60 ≤80 >0,98 -40..+50
Пример таблицы параметров драйвера ИПС40-700Т IP20 0100

Разберём каждый столбец таблицы отдельно:

  1.  “Lamp” ­– указывает на тип нагрузки источника питания. В данном случае это светодиоды.
  2. “Pin” – максимальная потребляемая мощность в ваттах (см. п. 10). Значение, указанное в таблице, не будет долговременно превышено ни при каких условиях эксплуатации, если драйвер не перегружен по выходу.
  3. “Pout max” – максимальная долговременная мощность на выходе драйвера. Это мощность в нагрузке, которую может гарантировано обеспечить драйвер.
  4. “Uп” – напряжение питания. В указанном диапазоне напряжений питания, драйвер сохраняет полную свою работоспособность с сохранением всех заявленных параметров.
  5.  “Fп” – частота питающего напряжения. Драйвер предназначен для питания от сети переменного тока с частотой, лежащей в диапазоне, указанном в таблице.
  6. “Iout” – номинальный ток, обеспечиваемый драйвером в нагрузке. Следует отметить, что, как правило, для выпускаемыми нашим заводом приборов фактический выходной ток может отличаться от заявленного на 5­­-7% в зависимости от модели (см. паспорт на изделие).
  7. “КПД” – коэффициент полезного действия драйвера. Величина в процентах показывает какая часть потребляемой драйвером мощности от сети питания отдаётся им в нагрузку. Этот параметр рассчитывается по формуле КПД=Pout/Pin*100%. Реальное значение КПД для драйвера будет не хуже указанной в таблице во всём диапазоне допустимых нагрузок. Но для диммируемого драйвера следует учесть, что при снижении выходного тока от номинального (диммировании) КПД драйвера будет снижаться следом за выходной мощностью вплоть до КПД=0% при Pout=0 (когда светильник не светится).
  8.  “Uout” – диапазон выходных напряжений. В этом диапазоне напряжений на нагрузке драйвер обеспечивает все заявленные параметры. Выход за границу диапазона в сторону снижения напряжения может привести появлению мигания светодиодов, неустойчивому запуску светильника (с промаргиваниями) и ухудшению входных параметров драйвера (КПД и коэффициент мощности). Выход за верхний предел диапазона напряжений приведёт к перегрузке драйвера, затем к снижению выходного тока и возможным миганиям светильника.
  9.  “Uout xx” – напряжение холостого хода. Если драйвер будет отключен от нагрузки, то напряжение на выходе драйвера не превысит значение, указанное в таблице. Ограничение напряжения обеспечивает, встроенная в драйвер, защита от холостого хода.
  10. “λ” – коэффициент мощности. Параметр, указывающий насколько «правильно» драйвер потребляет электроэнергию из сети (у идеальной нагрузки λ=1). Потребляемая прибором от питающей сети (полная) мощность, может быть представлена как сумма двух мощностей: активной и реактивной. Активная мощность – это та мощность, которая используется с пользой в приборе, а реактивная мощность – мощность, которая прибором расходуется не эффективно. Реактивная мощность не участвует в производстве работы, а лишь перегружает электросеть и энергогенерирующие мощности сети. Рассчитывается параметр по формуле  λ = P/S, где Р – активная мощность, а S – полная мощность. Для бытовых потребителей, как правило, указывается активная потребляемая мощность, а коэффициент мощности зачастую не указывается. Стандартные бытовые электросчётчики считают, как правило, полную потребляемую мощность, а крупные промышленные потребители зачастую оплачивают реактивную мощность отдельно по повышенному тарифу. Это приводит к тому, что частный владелец дешёвой светодиодной лампочки с указанной мощностью 4 Вт, и не указанным коэффициентом мощности 0,6 – оплачивает потребляемую лампочкой мощность как 4/0,6 = 6,7 Вт. Массовое применение таких ламп промышленным потребителем приведёт к необходимости иметь инфраструктуру электросети с более чем в полтора раза завышенными параметрами по максимальным токам и мощностям, чем фактические, и значительные затраты на оплату электроэнергии. В данном примере, драйвер имеет λ=0,98 и при максимальном потреблении 47 Вт активной мощности, полная мощность составит 47/0,98 = 48 Вт.
  11.  “Ta” – температура окружающей среды. Диапазон температур окружающей среды, при которых прибор обеспечивает все заявленные параметры. Чаще всего драйвер применяется в составе светильника и устанавливается в непосредственной близости от светоизлучающего модуля или в одном корпусе с ним. В таком случае следует принимать в расчёт сумму возможных диапазонов температур снаружи светильника и внутри него, как правило, это наименьшая температура воздуха снаружи светильника и наивысшая температура внутри.

Внимательно читайте маркировку на корпусе прибора, помимо параметров прибора в ней вы найдете схему расположения выводов драйвера, наличие дополнительных защит и т.д. Правильная эксплуатация драйвера – залог долгого срока его службы.

www.argos-trade.com


Смотрите также