Драйвер (электроника). Драйвер электроника


Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

ru.wikiyy.com

Драйвер (электроника) — Machinepedia

Микросхема-драйвер RS-232 Мостовой драйвер

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства: Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин. Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических парметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д. Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д. Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования.

Драйверы светодиодов

Светодиоды в отличие от других излучающих свет приборов (ламп, светильников), не могут быть включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Наиболее простым решением для ограничения тока может считаться резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Чем меньше сопротивление резистора, тем меньше он будет греться, но и тем больше будет меняться ток при изменении параметров.

Другой способ питания — стабилизация тока через светодод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующх ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы с стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять включением, выключением и яркостью не только каждого пиксела, но и его цветом.

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использованя светодиодных излучателей.

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные импульсные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток. Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться.

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая последовательность.

machinepedia.org

Драйвер (электроника) — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Чем меньше сопротивление резистора, тем больше он будет греться, так как напряжение на резисторе практически неизменно и приблизительно равно разности напряжения питания и падения напряжения на светодиоде, но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры.

Наиболее популярные на данный момент эффективные схемы управления — на основе импульсных преобразователей (импульсные источники) и на основе емкостных элементов (емкостные источники).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

Напишите отзыв о статье "Драйвер (электроника)"

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ [http://www.myrobot.ru/stepbystep/el_driver.php Драйвер двигателей L293D]

Отрывок, характеризующий Драйвер (электроника)

– А как же ты от неё избавилась? – удивилась я. – Ну, если честно, я и не избавлялась... – смутилась девочка. – Я просто бабушку позвала... – А, что ты называешь «этажами»? – всё ещё не могла успокоиться я. – Ну, это разные «миры» где обитают сущности умерших... В самом красивом и высоком живут те, которые были хорошими... и, наверное, самыми сильными тоже. – Такие, как ты? – улыбнувшись, спросила я. – О, нет, конечно! Я наверное сюда по ошибке попала. – Совершенно искренне сказала девчушка. – А знаешь, что самое интересное? Из этого «этажа» мы можем ходить везде, а из других никто не может попасть сюда... Правда – интересно?.. Да, это было очень странно и очень захватывающе интересно для моего «изголодавшегося» мозга, и мне так хотелось узнать побольше!.. Может быть потому, что до этого дня мне никогда и никто ничего толком не объяснял, а просто иногда кто-то что-то давал (как например, мои «звёздные друзья»), и поэтому, даже такое, простое детское объяснение уже делало меня необычайно счастливой и заставляло ещё яростнее копаться в своих экспериментах, выводах и ошибках... как обычно, находя во всём происходящем ещё больше непонятного. Моя проблема была в том, что делать или создавать «необычное» я могла очень легко, но вся беда была в том, что я хотела ещё и понимать, как я это всё создаю... А именно это пока мне не очень-то удавалось... – А остальные «этажи»? Ты знаешь, сколько их? Они совсем другие, непохожи на этот?.. – не в состоянии остановиться, я с нетерпением заваливала Стеллу вопросами. – Ой, я тебе обещаю, мы обязательно пойдём туда погулять! Ты увидишь, как там интересно!.. Только там и опасно тоже, особенно в одном. Там такие чудища гуляют!.. Да и люди не очень приятные тоже. – Я думаю, я уже видела похожих чудищ, – кое-что вспомнив, не очень уверенно сказала я. – Вот посмотри... И я попробовала показать ей первых, встреченных в моей жизни, астральных существ, которые нападали на пьяного папу малышки Весты. – Ой, так это же такие же! А где ты их видела? На Земле?!.. – Ну, да, они пришли, когда я помогала одной хорошей маленькой девочке проститься со своим папой... – Значит, они приходят и к живым?.. – очень удивилась моя подружка. – Не знаю, Стелла. Я ещё вообще почти ничего не знаю... А так хотелось бы не ходить в потёмках и не узнавать всё только на «ощупь»... или из своего опыта, когда постоянно за это «бьют по голове»... Как ты думаешь, твоя бабушка не научила бы чему-то и меня?.. – Не знаю... Ты, наверное, должна сама у неё об этом спросить? Девочка глубоко о чём-то задумалась, потом звонко рассмеялась и весело сказала: – Это было так смешно, когда я только начала «творить»!!! Ой, ты бы знала, как это было смешно и забавно!.. Вначале, когда от меня «ушли» все, было очень грустно, и я много плакала... Я тогда ещё не знала где они, и мама, и братик... Я не знала ещё ничего. Вот тогда, видимо, бабушке стало меня жалко и она начала понемножку меня учить. И... ой, что было!.. Вначале я куда-то постоянно проваливалась, создавала всё «шиворот навыворот» и бабушке приходилось за мной почти всё время наблюдать. А потом я научилась... Даже жалко, потому что она теперь уже реже приходит... и я боюсь, что может когда-нибудь она не придёт совсем... Впервые я увидела, насколько грустно иногда бывает этой маленькой одинокой девочке, несмотря на все эти, создаваемые ею, удивительные миры!.. И какой бы она ни была счастливой и доброй «от рождения», она всё ещё оставалась всего лишь очень маленьким, всеми родными неожиданно брошенным ребёнком, который панически боялся, чтобы единственный родной человек – её бабушка – тоже бы в один прекрасный день от неё не ушла... – Ой, пожалуйста, так не думай! – воскликнула я. – Она тебя так любит! И она тебя никогда не оставит. – Да нет... она сказала, что у всех нас есть своя жизнь, и мы должны прожить её так, как каждому из нас суждено... Это грустно, правда? Но Стелла, видимо, просто не могла долго находиться в печальном состоянии, так как её личико опять радостно засветилось, и она уже совсем другим голоском спросила: – Ну что, будем смотреть дальше или ты уже всё забыла? – Ну, конечно же, будем! – как бы только что очнувшись от сна, теперь уже с большей готовностью ответила я. Я не могла ещё с уверенностью сказать, что хотя бы что-то по-настоящему понимаю. Но было невероятно интересно, и кое-какие Стеллины действия уже становились более понятными, чем это было в самом начале. Малышка на секунду сосредоточилась, и мы снова оказались во Франции, как бы начиная точно с того же самого момента, на котором недавно остановились... Опять был тот же богатый экипаж и та же самая красивая пара, которая никак не могла о чём-то договориться... Наконец-то, совершенно отчаявшись что-то своей юной и капризной даме доказать, молодой человек откинулся на спинку мерно покачивавшегося сидения и грустно произнёс: – Что ж, будь по-вашему, Маргарита, я не прошу вашей помощи более... Хотя, один лишь Бог знает, кто ещё мог бы помочь мне увидеться с Нею?.. Одного лишь мне не понять, когда же вы успели так измениться?.. И значит ли это, что мы не друзья теперь? Девушка лишь скупо улыбнулась и опять отвернулась к окошку... Она была очень красивой, но это была жестокая, холодная красота. Застывшее в её лучистых, голубых глазах нетерпеливое и, в то же время, скучающее выражение, как нельзя лучше показывало, насколько ей хотелось как можно быстрее закончить этот затянувшийся разговор. Экипаж остановился около красивого большого дома, и она, наконец, облегчённо вздохнула. – Прощайте, Аксель! – легко выпорхнув наружу, по-светски холодно произнесла она. – И разрешите мне напоследок дать вам хороший совет – перестаньте быть романтиком, вы уже не ребёнок более!.. Экипаж тронулся. Молодой человек по имени Аксель неотрывно смотрел на дорогу и грустно сам себе прошептал: – Весёлая моя «маргаритка», что же стало с тобою?.. Неужели же это всё, что от нас, повзрослев, остаётся?!.. Видение исчезло и появилось другое... Это был всё тот же самый юноша по имени Аксель, но вокруг него жила уже совершенно другая, потрясающая по своей красоте «реальность», которая больше походила на какую-то ненастоящую, неправдоподобную мечту... Тысячи свечей головокружительно сверкали в огромных зеркалах какого-то сказочного зала. Видимо, это был чей-то очень богатый дворец, возможно даже королевский... Невероятное множество «в пух и в прах» разодетых гостей стояли, сидели и гуляли в этом чудесном зале, ослепительно друг другу улыбаясь и, время от времени, как один, оглядываясь на тяжёлую, золочёную дверь, чего-то ожидая. Где-то тихо играла музыка, прелестные дамы, одна красивее другой, порхали, как разноцветные бабочки под восхищёнными взглядами так же сногсшибательно разодетых мужчин. Всё кругом сверкало, искрилось, сияло отблесками самых разных драгоценных камней, мягко шуршали шелка, кокетливо покачивались огромные замысловатые парики, усыпанные сказочными цветами...

o-ili-v.ru

Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

wikipedia.black

Драйвер (электроника) Вики

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов[ | код]

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств[ | код]

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также[ | код]

Примечания[ | код]

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

ru.wikibedia.ru

Драйвер (электроника) - Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов[ | ]

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств[ | ]

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также[ | ]

Примечания[ | ]

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

encyclopaedia.bid

Драйвер (электроника) - Вики

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

ru.wikiredia.com


Смотрите также