Драйвер (электроника). Электроника драйвер


Драйвер (электроника) — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Чем меньше сопротивление резистора, тем больше он будет греться, так как напряжение на резисторе практически неизменно и приблизительно равно разности напряжения питания и падения напряжения на светодиоде, но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры.

Наиболее популярные на данный момент эффективные схемы управления — на основе импульсных преобразователей (импульсные источники) и на основе емкостных элементов (емкостные источники).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

Напишите отзыв о статье "Драйвер (электроника)"

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ [www.myrobot.ru/stepbystep/el_driver.php Драйвер двигателей L293D]

Отрывок, характеризующий Драйвер (электроника)

Высвободив ногу, он поднялся. «Где, с какой стороны была теперь та черта, которая так резко отделяла два войска?» – он спрашивал себя и не мог ответить. «Уже не дурное ли что нибудь случилось со мной? Бывают ли такие случаи, и что надо делать в таких случаях?» – спросил он сам себя вставая; и в это время почувствовал, что что то лишнее висит на его левой онемевшей руке. Кисть ее была, как чужая. Он оглядывал руку, тщетно отыскивая на ней кровь. «Ну, вот и люди, – подумал он радостно, увидав несколько человек, бежавших к нему. – Они мне помогут!» Впереди этих людей бежал один в странном кивере и в синей шинели, черный, загорелый, с горбатым носом. Еще два и еще много бежало сзади. Один из них проговорил что то странное, нерусское. Между задними такими же людьми, в таких же киверах, стоял один русский гусар. Его держали за руки; позади его держали его лошадь. «Верно, наш пленный… Да. Неужели и меня возьмут? Что это за люди?» всё думал Ростов, не веря своим глазам. «Неужели французы?» Он смотрел на приближавшихся французов, и, несмотря на то, что за секунду скакал только затем, чтобы настигнуть этих французов и изрубить их, близость их казалась ему теперь так ужасна, что он не верил своим глазам. «Кто они? Зачем они бегут? Неужели ко мне? Неужели ко мне они бегут? И зачем? Убить меня? Меня, кого так любят все?» – Ему вспомнилась любовь к нему его матери, семьи, друзей, и намерение неприятелей убить его показалось невозможно. «А может, – и убить!» Он более десяти секунд стоял, не двигаясь с места и не понимая своего положения. Передний француз с горбатым носом подбежал так близко, что уже видно было выражение его лица. И разгоряченная чуждая физиономия этого человека, который со штыком на перевес, сдерживая дыханье, легко подбегал к нему, испугала Ростова. Он схватил пистолет и, вместо того чтобы стрелять из него, бросил им в француза и побежал к кустам что было силы. Не с тем чувством сомнения и борьбы, с каким он ходил на Энский мост, бежал он, а с чувством зайца, убегающего от собак. Одно нераздельное чувство страха за свою молодую, счастливую жизнь владело всем его существом. Быстро перепрыгивая через межи, с тою стремительностью, с которою он бегал, играя в горелки, он летел по полю, изредка оборачивая свое бледное, доброе, молодое лицо, и холод ужаса пробегал по его спине. «Нет, лучше не смотреть», подумал он, но, подбежав к кустам, оглянулся еще раз. Французы отстали, и даже в ту минуту как он оглянулся, передний только что переменил рысь на шаг и, обернувшись, что то сильно кричал заднему товарищу. Ростов остановился. «Что нибудь не так, – подумал он, – не может быть, чтоб они хотели убить меня». А между тем левая рука его была так тяжела, как будто двухпудовая гиря была привешана к ней. Он не мог бежать дальше. Француз остановился тоже и прицелился. Ростов зажмурился и нагнулся. Одна, другая пуля пролетела, жужжа, мимо него. Он собрал последние силы, взял левую руку в правую и побежал до кустов. В кустах были русские стрелки.

Пехотные полки, застигнутые врасплох в лесу, выбегали из леса, и роты, смешиваясь с другими ротами, уходили беспорядочными толпами. Один солдат в испуге проговорил страшное на войне и бессмысленное слово: «отрезали!», и слово вместе с чувством страха сообщилось всей массе. – Обошли! Отрезали! Пропали! – кричали голоса бегущих. Полковой командир, в ту самую минуту как он услыхал стрельбу и крик сзади, понял, что случилось что нибудь ужасное с его полком, и мысль, что он, примерный, много лет служивший, ни в чем не виноватый офицер, мог быть виновен перед начальством в оплошности или нераспорядительности, так поразила его, что в ту же минуту, забыв и непокорного кавалериста полковника и свою генеральскую важность, а главное – совершенно забыв про опасность и чувство самосохранения, он, ухватившись за луку седла и шпоря лошадь, поскакал к полку под градом обсыпавших, но счастливо миновавших его пуль. Он желал одного: узнать, в чем дело, и помочь и исправить во что бы то ни стало ошибку, ежели она была с его стороны, и не быть виновным ему, двадцать два года служившему, ни в чем не замеченному, примерному офицеру. Счастливо проскакав между французами, он подскакал к полю за лесом, через который бежали наши и, не слушаясь команды, спускались под гору. Наступила та минута нравственного колебания, которая решает участь сражений: послушают эти расстроенные толпы солдат голоса своего командира или, оглянувшись на него, побегут дальше. Несмотря на отчаянный крик прежде столь грозного для солдата голоса полкового командира, несмотря на разъяренное, багровое, на себя не похожее лицо полкового командира и маханье шпагой, солдаты всё бежали, разговаривали, стреляли в воздух и не слушали команды. Нравственное колебание, решающее участь сражений, очевидно, разрешалось в пользу страха. Генерал закашлялся от крика и порохового дыма и остановился в отчаянии. Всё казалось потеряно, но в эту минуту французы, наступавшие на наших, вдруг, без видимой причины, побежали назад, скрылись из опушки леса, и в лесу показались русские стрелки. Это была рота Тимохина, которая одна в лесу удержалась в порядке и, засев в канаву у леса, неожиданно атаковала французов. Тимохин с таким отчаянным криком бросился на французов и с такою безумною и пьяною решительностью, с одною шпажкой, набежал на неприятеля, что французы, не успев опомниться, побросали оружие и побежали. Долохов, бежавший рядом с Тимохиным, в упор убил одного француза и первый взял за воротник сдавшегося офицера. Бегущие возвратились, баталионы собрались, и французы, разделившие было на две части войска левого фланга, на мгновение были оттеснены. Резервные части успели соединиться, и беглецы остановились. Полковой командир стоял с майором Экономовым у моста, пропуская мимо себя отступающие роты, когда к нему подошел солдат, взял его за стремя и почти прислонился к нему. На солдате была синеватая, фабричного сукна шинель, ранца и кивера не было, голова была повязана, и через плечо была надета французская зарядная сумка. Он в руках держал офицерскую шпагу. Солдат был бледен, голубые глаза его нагло смотрели в лицо полковому командиру, а рот улыбался.Несмотря на то,что полковой командир был занят отданием приказания майору Экономову, он не мог не обратить внимания на этого солдата. – Ваше превосходительство, вот два трофея, – сказал Долохов, указывая на французскую шпагу и сумку. – Мною взят в плен офицер. Я остановил роту. – Долохов тяжело дышал от усталости; он говорил с остановками. – Вся рота может свидетельствовать. Прошу запомнить, ваше превосходительство!

wiki-org.ru

Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

ru.bywiki.com

Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Видео по теме

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

wikipedia.green

Драйвер (электроника) Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

wikiredia.ru

Драйвер (электроника)

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования.
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Содержание

  • 1 Драйверы светодиодов
  • 2 Драйверы исполнительных устройств
  • 3 См. также
  • 4 Примечания

Драйверы светодиодов

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками. Именно поэтому диод называется «токовым прибором», и применение традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода это резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Чем меньше сопротивление резистора, тем больше он будет греться, так как напряжение на резисторе практически неизменно и приблизительно равно разности напряжения питания и падения напряжения на светодиоде, но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры.

Наиболее популярные на данный момент эффективные схемы управления — на основе импульсных преобразователей (импульсные источники) и на основе емкостных элементов (емкостные источники).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом.

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей.

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток.

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться.

Мостовой драйвер

Драйверы исполнительных устройств

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

См. также

  • Контроллер электрического двигателя
  • Частотный преобразователь
  • Светодиод
    • Белый светодиод

Примечания

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

Драйвер (электроника) Информация о

Драйвер (электроника)Драйвер (электроника)

Драйвер (электроника) Информация Видео

Драйвер (электроника) Просмотр темы.

Драйвер (электроника) что, Драйвер (электроника) кто, Драйвер (электроника) объяснение

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами[7]. Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

  1. ↑ Петропавловский Ю. Современные микросхемы управления двигателями постоянного тока фирм ROHM и Toshiba. Современная электроника № 2 2010 г.
  2. ↑ 1 2 Бирюков Е. Элементная база и способы её применения для решения задач управления питанием светодиодов. Компоненты и технологии № 11 2006 г.
  3. ↑ Селиванов М. Светодиодные драйверы производства фирмы SiTI. Компоненты и технологии № 2 2008 г.
  4. ↑ Никитин А.Применение импульсных повышающих преобразователей фирмы National Semiconductor для управления светодиодами. Компоненты и технологии № 8 2007 г.
  5. ↑ Евстифеев А.Практический опыт применения микросхемы Supertex HV9910. Компоненты и технологии № 12 2009 г.
  6. ↑ Ричардсон К. Драйверы светодиодных ламп уличного освещения производства National Semiconductor. Компоненты и технологии № 4 2011 г.
  7. ↑ Драйвер двигателей L293D

zazor.ch

Драйвер (электроника) — Википедия

Микросхема-драйвер RS-232

Драйвер (англ. driver — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера подпадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приема и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д.[1]
  • Модули питания и управления устройствами, требующими соблюдения определенных рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования[2].
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.

Содержание

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включенный последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту "паразитную" мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления емкостных элементов (емкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом[3].

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей[4].

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток[5][6].

Такие драйверы позволяют включить один или несколько светодиодов, соединенных в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться[2].

ru-m.wiki.ng


Смотрите также