LED драйвер. Зачем он нужен и как его подобрать? Led драйвер


LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания)  — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер —  обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.

Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также  будет 300мА, а напряжение упадет в два раза.

Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax   — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ  – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте  горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.

Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два.  Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании  и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.

 Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия  (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.

Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они  демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания  обойдется вам дешевле, но будет не столь  надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют  таким драйверам быть в спросе у покупателей.  Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной,  недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя. 

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер  рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

electrongrad.ru

Простой LED драйвер для 3w светодиода на PT4115

Микросхема PT4115 от компании PowTech продолжает зарабатывать положительные отзывы среди российских радиолюбителей. Малоизвестному китайскому производителю удалось вместить в компактном корпусе несколько блоков управления с мощным транзистором на выходе. Микросхема разработана для стабилизации тока и питания им светодиодов мощностью более 1 Вт. Драйвер на основе PT4115 имеет минимальную обвязку и высокий КПД. Убедиться в этом и узнать о тонкостях подбора элементов принципиальной схемы поможет данная статья.

Краткое описание микросхемы PT4115

Согласно официальной документации, LED драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока 5%;
  • имеется защита от обрыва нагрузки;
  • имеется вывод для регулировки яркости и включения/выключения при помощи DC или ШИМ;
  • частота переключения до 1 МГЦ;
  • КПД до 97%;
  • обладает эффективным корпусом, с точки зрения рассеивания мощности.

распиновка выводовНазначение выводов PT4115:

  1. SW. Вывод выходного переключателя (МОП-транзистора), который подключен непосредственно к его стоку.
  2. GND. Общий вывод сигнальной и питающей части схемы.
  3. DIM. Вход для задания диммирования.
  4. CSN. Вход с датчика тока.
  5. VIN. Вывод напряжения питания.

Микросхема PT4115 имеет отдельный вывод для управления включением и выключением светодиодов, а также возможностью регулировки яркости с помощью изменения уровня напряжения или ШИМ на выводе DIM.

Принципиальная схема драйвера

схемаНа рисунке представлены две принципиальные схемы драйвера для 3w светодиода на основе PT4115. Первая схема питается источником постоянного тока напряжением от 6 до 30 вольт. Вторую схему дополняет диодный мост, питается она источником переменного тока с напряжением 12-18В.

На выходе диодного моста рекомендуется дополнительно установить конденсатор емкостью 1000 мкФ. Он сгладит колебания выпрямленного напряжения.

Важным элементом обоих схем является конденсатор CIN. Он непросто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия ключа (МОП-транзистора). Без CIN индуктивная энергия через диод Шоттки D поступит на вывод VIN и спровоцирует пробой микросхемы по питанию. Поэтому включение драйвера без входного конденсатора категорически запрещено.

Индуктивность L подбирается исходя из количества светодиодов и тока в нагрузке.

Согласно документации, в схеме драйвера для 3 ватного светодиода рекомендуется использовать индуктивность на 68-220 мкГн.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением номинала индуктивности в большую сторону. При этом снижается эффективность всей схемы, но схема остается работоспособной. На малых токах индуктивность должна быть больше, чтобы компенсировать пульсации, возникающие из-за задержки при переключении транзистора.

Резистор RS выполняет функцию датчика тока. В первый момент времени, при подаче входного напряжения ток через RS и L равен нулю. Затем внутрисхемный CS comparator сравнивает потенциалы до и после резистора RS и на его выходе появляется высокий уровень. Ток в нагрузке, ввиду наличия индуктивности, начинает плавно нарастать до величины, определяемой RS. Скорость увеличения тока зависит не только от величины индуктивности, но и от размера напряжения питания.

Работа драйвера основана на переключении компаратора внутри микросхемы, который постоянно сравнивает уровни напряжения на выводах IN и CSN. Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора RS с максимальным отклонением от номинала 1%.

Для включения светодиода на постоянную яркость вывод DIM остаётся не задействован, а ток на выходе определяется исключительно номиналом RS. Управление диммированием (яркостью) можно осуществляться одним из двух вариантов.диммированиеПервый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0,5 до 2,5В. При этом ток будет меняться пропорционально уровню потенциала на выводе DIM. Дальнейший рост напряжения, до 5В, не влияет на яркость и соответствует 100% току в нагрузке. Снижение потенциала ниже 0,3В приводит к отключению всей схемы. Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц.

Конструкция и детали сборки

Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве CIN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.

Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.

Катушку индуктивности можно сделать своими руками, используя кольцо из старого компьютера и провод ПЭЛ-0,35.

К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.

Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор RS. Минимальное значение RS=0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:

RS=0,1/ILED, где ILED – номинальное значение тока светодиода, А.

В схеме включения PT4115 для 3w светодиода значение Rs составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:

  • Rпосл=R1+R2+…+Rn;
  • Rпар=(R1xR2)/(R1+R2).

Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.

В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал. Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.

Читайте так же

ledjournal.info

Простые устройства - Драйвер мощного светодиода

Предлагаю вам свою версию драйвера мощного светодиода или линейки светодиодов.

Напряжение питания:  от +7в до +40в (+60в для версии LM2576HV) что достаточно для питания почти любого мощного светодиода или линейки светодиодов любой разумной мощности.

Драйвер светодиода обеспечивает на выходе стабилизированный ток в диапазоне вплоть до 3 ампер.

{ads1}

Схема драйвера:

Принципиальная схема

Как видите, это обычный понижающий преобразователь с ОС  по току.

Немного о деталях:

С1  "по вкусу", особо много мкф безполезно, особо мало тоже не очень хорошо.

С3 1....2,2мкф меньшее значение ухудшит стабилизацию при изменении питающего напряжения, большее значение приведёт к броску тока пи подаче питания на драйвет что грозит светодиоду печальными последствиями.

С4 10...1000мкф, от него зависят пульсации на выходе

С2, С5 немного (почти незаметно) уменьшают пульсации.

Диод D1 на ток не менее чем потребляет светодиод, указанный 1N5819 расчитан на 1А

Типичные токи потребления для мощных светодиодов:

0,5 вт - 150мА

1 вт - 350мА

3 вт - 700...800мА

5 вт - 1200мА

Более мощные как правило являются матрицам с токами  от 0,5А до 2А.

Дроссель почти любой имеющий индуктивность от 100мкГн и более, я намотал около 100 витков (что явно больше, чем минимально необходимые) на порошковом колечке Т60.

Операционный усилитель (ОУ) любой, я применил LM358 в корпусе SO8.

конденсаторы С1, С3, С4 - электролитические оксидные.

При резисторах smd типоразмеров 0805, 1206, 2512 у меня получилась плата размером 31 х 14мм

Для ленивых С1, С2  можно не ставить.

Имейте в виду что ОУ питается сразу от входного напряжения и напряжение питания не должно превышать допустимого знаяения для применяемого вами ОУ в противном случае придётся добавить отдельный стабилизатор для него.

В моём случае плата размерами 31 х 14 мм получилась вот с такой компоновкой:Печатная плата драйвера светодиода

Низкоомный резистор для считывания тока размера 2512, для резистора R3 предусмотрено два посадочных места в случае если нужное значение будет отсутствовать, и тогда можно будет составить его номинал из двух.

Провода питания я подпаиваю прямо к входному электролиту, хотя можно сделать и для них отверстия, место позволяет.

Дроссель одним выводом припаивается к пятаку рядом с катодом диода, вторым выводом  к пятаку рядом с + выводом крайнего правого на рисунке электролита (С4).

{ads2}При указанных на схеме номиналах выходной ток составляет 718мА, это расчётное значение,  на самом деле из-за 5% допуска на номиналы у меня получилось 720мА,  схема была сделана для питания 3 ваттного светодиода у которого по даташиту ток составляет 800мА.

Чтобы вы могли сами посчитать номиналы деталей для вашего конкретного случая покажу как это делается:

Итак допустим  у вас светодиод мощностью 3вт  которому необходимо стабильные 800мА, и вы решили запитать его током 650мА.

1. Считаем какое какое будет падение на шунте (R4) при нужном нам токе.

Допустим вы не смогли достать резистор 0,1 ом, а нашли в кладовке на 0,15 ом; при нужных нам 650 мА на нём будет падать 0,65а * 0,15 ом = 0,0975в (97,5мВ)

2. Считаем  во сколько раз нужно усилить наши 0,0975в для подачи на вход ОС ШИМа.

Т.к. источник опорного напряжения (ИОН) в LM2576 по даташиту равен 1,23в (допуск 1,18в...1,286в)  то нам нужно усилить напряжение с шунта в 1,23в \ 0,0975в = 12,615 раз.

3. Подбираем нужные нам номиналы R2 и R3.

Коэффициент усиления ОУ определяется формулой 1 + (R2/R1), как видите резистор R2 должен быть примерно во столько же раз больше чем R1 и плюс единица, нам нужно увеличить напряжение с шунта в 12,615 раз поэтому смотрим что у нас есть с разницей примерно в 11,615 раз в кладовке, т.е. если R2 будет 10 кОм то R1 должен быть 10000\11,615 = 860,95 ом. Или допустим вы нашли  у себя резистор на 47 кОм и хотите его применить в качестве R2, соответственно R3 = 47000\11.615 = 4046,5 ом.

Итак пусть R2 ,вы нашли на 100 кОм, тогда R3 = 100000\11.615 = 8609,5 ом = 8,6 кОм в стандартном ряду Е24 такого номинала нет, ближайшие это 8,2 кОм и 9,1кОм.

В случае, если R3 будет 8,2 кОм посчитаем какой будет выходной ток драйвера светодиода:

Коэффициент усиления (Ку) ОС по формуле  1 + (R2/R1), будет равен 1 + (100к\8,2к) = 13,195 раз, это значит, что при опорном напряжении (ИОН, 4я нога LM2576) равном 1,23в, на шунте будет напряжение в 13,195 раз меньше, т.е. 1,23в\13,195раз = 0,0932в, при шунте 0,15 ом это даст 0,0932в \ 0,15 ом = 0,6214а = 621мА что на 29мА меньше необходимого.

В случае, если R3 будет 9,1 кОм, соответственно считаем также:

Ку = 1 + (100к\9,1к) = 11,989

на шунте = 1,23в \ 11,989 = 0,10259в

Ток драйвера светодиода составит = 0,10259 \ 0,15 ом = 0,6839а = 684мА что на 34мА больше необходимого. Можно поставить резистор R3 8,2 кОм и докрутить недостающие 0,4 кОм подстроечником на 1 кОм заодно получим возможность подстраивать ток мощного светодиода как и возможность что в некоторый момент контакт движка подстроечника (например от вибрации) пропадёт и тогда Ку станет (при условии что крайние выводы подстроечника запаяны в схему) 100к\9,2к+1 = 11,869. На шунте станет 0,1036в, ток светодиода подскочит до 690мА.

Второй вариант составить R3 из двух, например нужные нам 8,6 кОм получаются при паралельном соединении 10 кОм и 56 кОм в итоге получим 8,48 кОм. В этом случае ток драйвера светодиода будет 641мА что на 9мА меньше нужным нам 650мА.

Если применить три резистора паралельно на 18 кОм, 33 кОм и 33 кОм то нужные 8,6 кОм совпадут почти точно Смеётся, или сделать нужные 8,6 кОм последовательным соединением 3,9 кОм и 4,7 кОм (мой вариант расположения резисторов придётся подкорректировать).

Не забываем про электролит на выходе, т.е. подавать питание нужно только после подсоединения светодиода иначе заряженный до напряжения питания электролит сожгёт светодиод.

Напоследок уже традиционно  немного фотографий собранного драйвера светодиода:

{ads1}

Пару слов об эффективности. Так как тактовая в LM2576 всего 52кГц, а на выходе стоит биполярный транзистор большой эффективности ожидать не стоит.

Пару замеров: Напряжение питания - ток -входная мощность - КПД

Выходной ток 750мА, нагрузка 2,7Ом напряжение 2,11в, потери на R4 = 0,056Вт

10в -  250мА - 2,5Вт - 63%

15в - 190мА - 2,85Вт - 55%

20в - 150мА - 3,0Вт - 52%

25в - 130мА - 3,25в - 44%

Или вариант на выходной ток 320мА, нагрузка та же 2,7Ом, 0,9в, потери на R4 = 0,01Вт

10в - 57мА - 0,57Вт - 50%

15в - 40мА - 0,6Вт - 48%

20в - 33мА - 0,66Вт - 44%

25в - 29мА - 0,725Вт - 39%

30в - 26мА - 0,9Вт - 32%

Или: (например 3...4 светодиода по 1 Вт)

Нагрузка 39Ом ток 320мА напряжение на нагрузке 12.48в мощность на нагрузке 3,9936Вт

При этом питание 30в 180мА соответственно потребляемая мощность 5,4Вт КПД 74%.

{ads1}

simple-devices.ru

led драйвер

Светодиодный драйвер стабилизирует ток, протекающий через светодиоды, что обеспечивает их долгий срок службы, в отличие от подключения к обычному БП.

27.12.2012

Драйвер FxLED компании ISSI управляет 144-мя полноцветными светодиодами в информационных дисплеях

Компания Integrated Silicon Solution, Inc. представила ИС IS31FL3731 (смотреть PDF) - высокопроизводительный драйвер точечной светодиодной матрицы, предназначенный для применения в интеллектуальных дисплеях мобильных телефонов, бытовых товарах, игрушках и устройствах персональной электроники. ИС IS31FL3731 является малогабаритным драйвером светодиодов с предварительно запрограммированной анимацией/цветовыми эффектами, конфигурируемым посредством последовательного информационного интерфейса I2C.

Автор: 2student

0 0 [0] 29.12.2012

Компания Power Integrations устанавливает уровень плотности мощности при замене трубок освещения T8

Компания Power Integrations представила два новых опорных проектах, описывающих высокоэффективные, неизолированные, с высоким коэффициентом мощности драйверы светодиодных трубок формфактора T8. Проекты используют небольшое количество компонентов и простые магнитные компоненты, односторонние печатные платы, получая уровень плотности мощности 14.2 Вт/дм3.

Автор: 2student

0 0 [0] 06.05.2013

Улучшенный и экономичный светодиодный драйвер HV9910C от компании Supertex

Компания Supertex, Inc. представила универсальный светодиодный драйвер HV9910C, с разомкнутым контуром и токовым управлением. Драйвер является идеальным решением для стандартного и декоративного светодиодного освещения, в качестве подсветки плоскопанельных дисплеев и других DC/DC или AC/DC применений с входной цепью базы.

Автор: topa_biser

0 5 [1] 25.03.2013

Понижающий светодиодный контроллер с возможностью регулировки яркости светодиодного освещения

Компания Alpha and Omega Semiconductor Limited выпустила одноканальный понижающий светодиодный контроллер AOZ1948 с возможностью линейной регулировки яркости светодиодного освещения от 100% до 1%, в дополнение к существующей интегральной цепи защиты для улучшения устойчивости и надежности работы системных решений.

Автор: topa_biser

1 0 [0] 10.04.2013

Компактный фонарик на основе драйвера СХ2601

Конструкция простого светодиодного фонарика с применением DC-DC преобразователя на основе драйвера СХ2601

Автор: АКА КАСЯН

3 0 [0] 27.06.2013

Светодиодный драйвер LT3955 с внутренним ШИМ генератором

Микросхема LT3955 от компании Linear Technology, DC/DC преобразователь, разработанный для работы в качестве источника постоянного тока и регулятора постоянного напряжения с внутренним 3.5 A переключателем, уже поступил в продажу. Внутренний ШИМ понижающий генератор м/с делает его идеальным решением для управления сильноточными светодиодами. LT3955 также имеет характеристики, пригодные для зарядных батарей и конденсаторов большой емкости.

Автор: topa_biser

0 0 [0] 21.07.2013

Компания Allegro представила новый 10-канальный светодиодный драйвер для автомобильных применений

Компания Allegro объявила о выпуске нового программируемого многовыводного светодиодного драйвера для подсветки LCD-дисплея, приборных панелей и дневных габаритных фар. В драйвер A8517 интегрирован повышающий преобразователь с токовым управлением с внутренним переключателем питания и 10 управляемыми по программируемой шине I²C нагрузками по току. Он обеспечивает коэффициента контрастности 5,000:1 и ШИМ диммирование на частоте 200 Гц.

Автор: topa_biser

0 0 [0] 02.09.2013

Модернизация мощного фонаря на светодиод 5 Ватт

Электронная начинка фонаря должна включать в себя драйвер мощного светодиода и контроллер заряда/разряда аккумулятора. Задача драйвера - обеспечивать стабильный ток на светодиоде. Задача контроллера заряда - обеспечить правильный режим заряда аккумулятора. Задача контроллера разряда - отключить аккумулятор от нагрузки при снижении напряжения ниже установленного предела, для предотвращения глубокого разряда.

Автор: hax

18 5 [1] 28.11.2013

Новейший контроллер сильноточного светодиодного драйвера с тройным выходом от Linear

Компания Linear Technology Corporation объявила о выпуске LT3797, DC/DC контроллера с тройным выходом, разработанного для управления тремя независимыми каналами светодиодов. Его фиксированная частота, архитектура токового режима обеспечивают постоянный, точно регулируемый ток для светодиодов в широком диапазоне входного и выходного напряжения

Автор: topa_biser

0 0 [0] 2011 г.

Блокинг-генератор для питания LED от 1.5В

Данное устройство позволяет запитать светодиод от одной пальчиковой батарейки. И не просто запитать, а заставить его светиться довольно ярко.

Автор: none

12 0 [0] Весь список тегов

cxem.net


Смотрите также