Устройство универсальной LED подсветки LCD экрана ноутбука CA-166, особенности, установка и адаптация. Подсветки драйвер


Ремонт светодиодной подсветки и led драйвера

 

 

 

Телевизоры с жидкокристаллическими LED экранами способны обеспечить четкое изображение, обладают утонченным дизайном и имеют множество полезных функций. В этих моделях изображение передается на дисплей с помощью светодиодной подсветки, равномерно расположенной по площади матрицы.

Признаки поломки светодиодной подсветки

За функцию подсветки отвечает цепь светодиодных ламп, состоящая из многих звеньев, поэтому достаточно часто происходят поломки её отдельных элементов. В том случае, когда подсветка даёт сбой, у LED телевизора может отсутствовать изображение, хотя звук присутствует и аппарат реагирует на команды, поданные с дистанционного управления: каналы переключаются, меняется уровень громкости. Если внимательно посмотреть на дисплей, можно увидеть темное изображение и даже различить силуэты фигур, но поврежденная подсветка не дает возможности воспроизвести картинку, как положено.Светодиодная подсветка ж/к телевизора может давать сбой по одной из двух причин:

    перегорание одного или нескольких светодиодов;     нарушение в работе LED-драйвера

Идентифицировать причину поломки достаточно сложно, так как проверка всех звеньев в цепи подсветки — это долгая и кропотливая работа. Мастер должен измерить напряжение на каждом светодиоде и таким образом найти поврежденный.Есть и другой способ проверки LED подсветки – подавать независимое питание на каждую ленту подсветки, выяснив, таким образом, ленту, на которой находятся неисправные светодиоды, а потом по отдельности проверить каждый диод на этой планке.

Если все элементы в порядке, значит, причина поломки кроется в LED-драйвере, установленном, обычно, на блоке питания телевизора.Если изображение выглядит деформированным или дёргается, причина сбоя заключается в неисправности драйвера, механическом повреждении шлейфов или потере контакта. Также, возможно искажение изображения при картинке нормальной яркости, появление полос и разводов на отдельных участках экрана. Следует учесть, что такие же симптомы возникают и при обрыве контактов шлейфа, поэтому важно правильно определить проблему. Если при нажатии на экран картинка восстанавливается или, наоборот, появляются новые полосы, значит, проблема в шлейфе и LED-подсветка тут ни при чем.Причины поломки LED-драйверовСветодиодная подсветка часто выходит из строя даже в телевизорах с жидкокристаллическими экранами от ведущих брендов. Основной причиной сбоя является избыточное питание: производители по умолчанию настраивают изображение на максимальную четкость и яркость, чтобы увеличить привлекательность товара. Обычно покупатели используют заданные настройки и в результате подача тока на светодиоды превышает допустимый уровень и элементы быстро перегорают.LED-драйвер является блоком питания подсветки, рассчитанным на определенную мощность. При постоянно повышенной нагрузке обрываются электролитические конденсаторы блока и подсветка отключается. Поломку легко устранить, если заменить деталь на более мощную. Нередки случаи, когда в электросети происходят скачки напряжения. В этом случае может выйти из строя один из элементов LED драйвера:

    транзистор, необходимый для преобразования электрических импульсов;     низкоомный резистор, который служит предохранителем;     конденсаторы.

При выходе из строя одного или нескольких элементов блока экран телевизора ненадолго включается, а затем гаснет. В этом случае светодиодная подсветка вспыхивает на несколько секунд, затем происходит перегрузка цепи и полное отключение драйвера. Это происходит при перегреве: плотно закрытый корпус блока не имеет вентиляции и при повышении температуры может давать сбой.При избыточной нагрузке на драйвер срабатывает защита от перенапряжения и подача тока к цепи подсветки прекращается. В этом случае в цепи происходит обрыв и подсветка гаснет.Если на светодиоды подаётся завышенное питание, лампы быстро перегорают. В этом случае даже невооруженным глазом можно заметить потемнение на обратной стороне цепочки. LED-драйвер отвечает за стабилизацию напряжения и при превышении рекомендованной нагрузки прерывает подачу тока. При стандартной силе тока в 400mA нагрузка на светодиодные лампы превышает норму и они выходят из строя уже через короткое время. Чтобы избежать поломки, необходимо ограничить поступление электрического тока до того момента, когда нагрузка станет избыточной. При силе в 300 mA яркость ж/к экрана незначительно снизится, но при этом температура нагрева светодиода упадёт на 35°C: с 95 до 60 градусов.

Чтобы исправить такую поломку, необходимо провести замену электролитических конденсаторов и проделать несколько вентиляционных отверстий в корпусе блока. Чтобы заранее предупредить проблему и увеличить срок эксплуатации телевизора, необходимо уменьшить яркость подсветки экрана, установленную производителем. Это не отразится на качестве и четкости картинки, изображение станет более естественным и легким для восприятия, а дорогостоящий телевизор будет служить намного дольше.

telemaster.life

Устройство универсальной LED подсветки LCD экрана ноутбука CA-166, особенности, установка и адаптация » Портал инженера

CCFL или LED?

Активно развивающейся светодиодная отрасль, не могла не повлиять и на отрасль LCD дисплеев, сейчас уже не имеет значения, это экран телефона, планшета, ноутбука, монитора или телевизора. Светодиодная или иначе говоря LED подсветка матриц практически полностью вытеснила подсветку на CCFL и EEFL лампах. И это вполне логично, LED подсветка имеет значительно больше преимуществ, таких как высокий КПД, большой срок службы, отсутствие ртути, отсутствие выгорания и широкий цветовой охват.Но что делать если в вашем ноутбуке стоит CCFL подсветка и она вышла из строя? Стоит ли ставить снова CCFL лампу или заменить ее на LED подсветку? Мой совет следующий: если вам этот ноутбук дорог, и вы не планируете после ремонта продавать или дарить, то лучше установить LED подсветку, и навсегда забыть об проблеме перегорания CCFL ламп. Да, в отдельных случаях это может выйти несколько дороже, а также замена требует некоторых технических навыков, но в этой статье я постараюсь рассказать про один из готовых наборов для такой модификации экрана вашего ноутбука, что может вам помочь при выборе и монтаже набора.Особенности набора LED подсветки CA-166 и схемотехническое решениеНабор LED подсветки CA-166, предназначен для замены ламп подсветки на светодиоды в ноутбуках различной диагонали. Внешний вид подсветки показан на рисунке ниже.

Общий вид LED подсветки с диодной лентой

Формфактор платы специально спроектирован для установки в ноутбуки вместо классической CCFL подсветки. С левой стороны плата имеет разъем с 4 контактами: «+ Питание», «земля», «включение подсветки», «регулировка яркости». Со второй стороны разъем для подключения LED ленты.В качестве драйвер LED подсветки, используется микросхема DF6113. Ознакомиться с даташитом на DF6113 можно здесь. Контроллер представляет собой специализированный контроллер, разработанный именно для работы в схемах питания LED подсветки LCD дисплея.Микросхема DF6113 способна работать при входном напряжении от 5 до 24В и при этом поддерживать постоянное значения тока на светодиодах. Забегая вперед хочу заметить, кто схемотехническое решение, реализованное в CA-166 требует входного напряжения не менее 10 вольт, об этом подробнее читайте далее. Контроллер поддерживает линейную регулировку яркости в диапазоне, как утверждает производитель от 10 до 100% (1:10). Но стоит оговориться, что это справедливо при использовании схемы подключения предложенной производителем. Если провести несложные изменения можно расширить диапазон регулировки яркости до 1:40.

Управление яркостью возможно, как прямое, так и инверсное. Помимо этого, DF6113 имеет функцию плавного пуска, функцию защиты от перенапряжения и короткого замыкания. LED подсветка CA-166 соответственно переняла эти функции.Подключаемая светодиодная лента состоит из светодиодов, подключённых параллельно-последовательно группами по 3 шт. При необходимости можно ленту укорачивать до нужной длинны, но сохраняя кратность диодов равную трем.Обратите внимание! При укорачивании ленты желательно изменить ток стабилизации драйвера, в противном случае при максимальной яркости светодиоды подсветки от рагрева могут начать деградировать, что сократит срок службы. О том, как изменить ток, будет написано далее.

Рассмотрим схемотехническое решение. Схема подсветки показана на рис…

Схема LED подсветки на контроллере DF6113A

Расположение индуктивности говорит, что она построена по принципу понижающего DC-DC конвертера отсюда и ограничение по минимуму входного напряжения о котором говорилось ранее. Для работы подсветки необходимо напряжение равное питанию 3х последовательных светодиодов (в среднем 9,6В) + 420мВ напряжение обратной связи. Следовательно, напряжение питания должно быть не ниже 10В и не более 24В (ограничение микросхемы). Резисторы R4 и R7 служат для задания рабочего тока LED подсветки. Силу тока выбирают из расчета что одна секция из трех диодов на максимальной яркости потребляет порядка 20мА. И исходя из этих данных рассчитывают по формуле Imax=420mV/Rвых. В таблице ниже представлены рекомендуемые значения сопротивлений.

Диагональ, дюйм

Длинна ленты, мм

Количестко диодов, шт

Rвых, Ом

15” квадрат

308

60

1

14” широк.

308

60

1

14” квадрат   

290

57

1,1

13.3” широк.

275

54

1,2

12” квадрат

274

54

1,2

12” широк.

258

51

1,2

11”

240

48

1,3

10”

220

42

1,5

Использование резисторов большего номинала не приведет к повреждению светодиодов, а лишь снизит максимальную яркость. Установка резисторов меньшего номинала также возможна, но при обязательном задействовании функции регулировки яркости ноутбуком.Регулировка яркости аналоговая и происходит путем изменения уровня напряжения на контакте DIM. Такое решение было сделано с целью повысить универсальность устройства, поскольку при использовании этой подсветки в ноутбуках с ШИМ регулировкой яркости, она также будет работать, но возможно уровень яркости будет регулироваться в недостаточно широких пределах. Если Вас не устроит получившийся диапазон регулировки яркости, то можно провести несложные доработки, описанные далее.

Доработка 1. Модификация LED подсветки под работу с ШИМ сигналом регулировки яркости

Эта доработка позволит несколько расширить диапазон регулировки яркостью и лучше адаптировать плату на работу с ШИМ сигналом управления.

Ниже представлена схема, на которой красными линиями отмечены внесенные элементы и соединения, а серыми – удаленные элементы и соединения

Схема изменений в драйвере LED подсветки под работу с ШИМ сигналом регулировки яркости

Для доработки потребуются

Диод 1N4148 или подобный (в корпусе SMD SOD-323*)Резистор 2.2 Ом** (SMD 1206)Резистор 3.0 Ом** (SMD 1206)

*Указанные типы корпусов не являются обязательными, но рекомендуются, поскольку очень удобно устанавливаются на плату.**Номиналы резисторов были выбраны из соображений щадящего режима работы LED подсветки. При необходимости можно использовать значения сопротивлений из таблицы, приведенной ранее.

Последовательность действий при доработке

Удалить C5Удалить R3Заменить токовые резисторы R4 и R7. Можно вместо 2х резисторов установить один на 1,3 Ом при этом несколько снизиться максимальная яркость.Установить диод 1N4148 диагонально, катодом к левому выводу резистора R3, а анодом к нижнему выводу конденсатора C5.На фотографии ниже наглядно показаны изменения платы LED драйвера. Места изменений обведены красной линией.

После такой доработки вход DIM будет полностью совместим с ШИМ сигналом яркости. Вход сигнала включения также полностью ШИМ – совместим. Ток, выдаваемый драйвером на максимальной яркости будет приблизительно равен 320mA. Минимальная яркость зависит от скважности ШИМ сигнала. При распространенной частоте ШИМ 60Гц, минимальная яркость получиться около 36mA что соответствует регулировке яркости 1:9. Поскольку частота ШИМ сигнала в большинстве ноутбуков всего 60 Гц, отдельные люди могут замечать легкое мерцание. Если необходимо от него избавиться, то рекомендую взглянуть на следующую доработку, которая лишена этого недостатка.

Доработка 2. Убираем влияние ШИМ сигнала на изображение

Эта доработка несколько сложнее, по сравнению с предыдущей, но дает более заметные результаты. При этой доработке удается полностью избавиться от модуляции яркости, повысить эффективность преобразования, расширить диапазон регулировки яркости вплоть до 1:100.

Ниже представлена схема с обозначенными доработками

Для доработки потребуются

Диод 1n4148 (или подобный в корпусе DO35*)Резистор 220kΩ 1% точностьРезистор 12kΩ (SMD 0603)Резистор 330kΩ (SMD 0603)Конденсатор 25V 0,1µF (SMD 0603 MLCC)N-канальный MOSFET (ZVN2106A, 2N7000 или аналоги)Резистор 1.8** Ом (SMD 1206)Резистор 3.9** Ом (SMD 1206)

Если необходимо расширить диапазон регулировки яркости, то потребуется еще замена индуктивности L1 номинал которой выбирается исходя из требований по регулировке яркости. Зависимость диапазона яркости от индуктивности приведены в следующей таблице:

Индуктивность, µH

Диапазон яркости

47

20:1

68

25:1

82

32:1

100

40:1

*Приведенная корпусировка элементов выбрана из соображений удобства монтажа и не является обязательным требованием.**Номиналы резисторов выбирают соответственно длине и потребляемому LED подсветкой току. См. таблицу выше.

Последовательность действий при доработке

Удалить конденсатор C5.Удалить резистор R3.Заменить токоизмерительные резисторы R4 и R7 на резисторы 1.8 Ом и 3.9 Ом (или на выбранные из таблицы).Если необходимо, то заменить индуктивность L1 - 47µH на большую по значению индуктивности. Это уменьшит минимально устанавливаемый выходной ток с 16 мА до 8 мА.Замените резистор R6 на резистор со значением 12кОм.Резистор 330 кОм припаять одной ножкой к 6 выводу микросхемы DF6113.Конденсатор 0,1µF припаять к 7 ножке микросхемы DF6113.Соединить свободные выводы резистора из пункта 6 и конденсатора из пункта 7 вместе.Припаяйте исток полевого транзистора к земляному выводу резистора R5.Припаяйте сток полевого транзистора к аноду диода 1N4148.Соедините катод диода 1N4148 в точке, образованной между резистором и конденсатором из пункта 8.Соедините вывод резистора 220 кОм с положительным выводом входного танталового конденсатора C6. Второй вывод соедините со стоком транзистора, это тот вывод, к которому мы ранее подключили анод диода 1N4148.Припаяйте затвор транзистора к левой контактной площадке резистора R3.При использовании элементов для поверхностного монтажа будьте предельно внимательны чтобы не допустить короткого замыкания межу выводами.

Расположение деталей можно посмотреть на следующих картинках:

После такой модификации, ШИМ сигнал управления яркостью будет преобразовываться в аналоговый. Это позволит избавиться от возможного мерцания, приведет к более линейной регулировке яркости и расширит диапазон ее регулировки.

Заключение

Рассмотренный набор LED подсветки, который разработан специально для замены CCFL в экранах ноутбуков, имеет ряд преимуществ, которые с компенсируют некоторую сложность в установке. К достоинствам относят ценовую доступность набора, долговечность, улучшенную цветопередачу и т.д. Хотя приведенный дизайн платы драйвера LED подсветки и не реализует всех преимуществ микросхемы DF6113, но это можно легко исправить при наличии пары распространенных радиоэлементов и паяльника.

Источник: https://ndft.com.ua/

Обсудить на форуме

ingeneryi.info

Устройство универсальной LED подсветки LCD экрана ноутбука CA-166, особенности, установка и адаптация

CCFL или LED?

Активно развивающейся светодиодная отрасль, не могла не повлиять и на отрасль LCD дисплеев, сейчас уже не имеет значения, это экран телефона, планшета, ноутбука, монитора или телевизора. Светодиодная или иначе говоря LED подсветка матриц практически полностью вытеснила подсветку на CCFL и EEFL лампах. И это вполне логично, LED подсветка имеет значительно больше преимуществ, таких как высокий КПД, большой срок службы, отсутствие ртути, отсутствие выгорания и широкий цветовой охват.

Но что делать если в вашем ноутбуке стоит CCFL подсветка и она вышла из строя? Стоит ли ставить снова CCFL лампу или заменить ее на LED подсветку? Мой совет следующий: если вам этот ноутбук дорог, и вы не планируете после ремонта продавать или дарить, то лучше установить LED подсветку, и навсегда забыть об проблеме перегорания CCFL ламп. Да, в отдельных случаях это может выйти несколько дороже, а также замена требует некоторых технических навыков, но в этой статье я постараюсь рассказать про один из готовых наборов для такой модификации экрана вашего ноутбука, что может вам помочь при выборе и монтаже набора.

 

Особенности набора LED подсветки CA-166 и схемотехническое решение

Набор LED подсветки CA-166, предназначен для замены ламп подсветки на светодиоды в ноутбуках различной диагонали. Внешний вид подсветки показан на рисунке ниже.

Общий вид LED подсветки с диодной лентой

 

Формфактор платы специально спроектирован для установки в ноутбуки вместо классической CCFL подсветки. С левой стороны плата имеет разъем с 4 контактами: «+ Питание», «земля», «включение подсветки», «регулировка яркости». Со второй стороны разъем для подключения LED ленты.

В качестве драйвер LED подсветки, используется микросхема DF6113. Ознакомиться с даташитом на DF6113 можно здесь. Контроллер представляет собой специализированный контроллер, разработанный именно для работы в схемах питания LED подсветки LCD дисплея.

Микросхема DF6113 способна работать при входном напряжении от 5 до 24В и при этом поддерживать постоянное значения тока на светодиодах. Забегая вперед хочу заметить, кто схемотехническое решение, реализованное в CA-166 требует входного напряжения не менее 10 вольт, об этом подробнее читайте далее. Контроллер поддерживает линейную регулировку яркости в диапазоне, как утверждает производитель от 10 до 100% (1:10). Но стоит оговориться, что это справедливо при использовании схемы подключения предложенной производителем. Если провести несложные изменения можно расширить диапазон регулировки яркости до 1:40.

Управление яркостью возможно, как прямое, так и инверсное. Помимо этого, DF6113 имеет функцию плавного пуска, функцию защиты от перенапряжения и короткого замыкания. LED подсветка CA-166 соответственно переняла эти функции.

Подключаемая светодиодная лента состоит из светодиодов, подключённых параллельно-последовательно группами по 3 шт. При необходимости можно ленту укорачивать до нужной длинны, но сохраняя кратность диодов равную трем.

Обратите внимание! При укорачивании ленты желательно изменить ток стабилизации драйвера, в противном случае при максимальной яркости светодиоды подсветки от рагрева могут начать деградировать, что сократит срок службы. О том, как изменить ток, будет написано далее.

Рассмотрим схемотехническое решение. Схема подсветки показана на рис…

Схема LED подсветки на DF6113A

Схема LED подсветки на контроллере DF6113A

 

Расположение индуктивности говорит, что она построена по принципу понижающего DC-DC конвертера отсюда и ограничение по минимуму входного напряжения о котором говорилось ранее. Для работы подсветки необходимо напряжение равное питанию 3х последовательных светодиодов (в среднем 9,6В) + 420мВ напряжение обратной связи. Следовательно, напряжение питания должно быть не ниже 10В и не более 24В (ограничение микросхемы). Резисторы R4 и R7 служат для задания рабочего тока LED подсветки. Силу тока выбирают из расчета что одна секция из трех диодов на максимальной яркости потребляет порядка 20мА. И исходя из этих данных рассчитывают по формуле Imax=420mV/Rвых. В таблице ниже представлены рекомендуемые значения сопротивлений.

Диагональ, дюйм

Длинна ленты, мм

Количестко диодов, шт

Rвых, Ом

15” квадрат

308

60

1

14” широк.

308

60

1

14” квадрат   

290

57

1,1

13.3” широк.

275

54

1,2

12” квадрат

274

54

1,2

12” широк.

258

51

1,2

11”

240

48

1,3

10”

220

42

1,5

 

Использование резисторов большего номинала не приведет к повреждению светодиодов, а лишь снизит максимальную яркость. Установка резисторов меньшего номинала также возможна, но при обязательном задействовании функции регулировки яркости ноутбуком.

Регулировка яркости аналоговая и происходит путем изменения уровня напряжения на контакте DIM. Такое решение было сделано с целью повысить универсальность устройства, поскольку при использовании этой подсветки в ноутбуках с ШИМ регулировкой яркости, она также будет работать, но возможно уровень яркости будет регулироваться в недостаточно широких пределах. Если Вас не устроит получившийся диапазон регулировки яркости, то можно провести несложные доработки, описанные далее.

 

Доработка 1. Модификация LED подсветки под работу с ШИМ сигналом регулировки яркости

 

Эта доработка позволит несколько расширить диапазон регулировки яркостью и лучше адаптировать плату на работу с ШИМ сигналом управления.

Ниже представлена схема, на которой красными линиями отмечены внесенные элементы и соединения, а серыми – удаленные элементы и соединения

Модификация LED подсветки под работу с ШИМ сигналом регулировки яркости

Схема изменений в драйвере LED подсветки под работу с ШИМ сигналом регулировки яркости

 

Для доработки потребуются

    Диод 1N4148 или подобный (в корпусе SMD SOD-323*)

    Резистор 2.2 Ом** (SMD 1206)

    Резистор 3.0 Ом** (SMD 1206)

 

*Указанные типы корпусов не являются обязательными, но рекомендуются, поскольку очень удобно устанавливаются на плату.

**Номиналы резисторов были выбраны из соображений щадящего режима работы LED подсветки. При необходимости можно использовать значения сопротивлений из таблицы, приведенной ранее.

 

Последовательность действий при доработке

  1. Удалить C5
  2. Удалить R3
  3. Заменить токовые резисторы R4 и R7. Можно вместо 2х резисторов установить один на 1,3 Ом при этом несколько снизиться максимальная яркость.
  4. Установить диод 1N4148 диагонально, катодом к левому выводу резистора R3, а анодом к нижнему выводу конденсатора C5.

На фотографии ниже наглядно показаны изменения платы LED драйвера. Места изменений обведены красной линией.

 плата LED драйвера подсветки ноутбука

После такой доработки вход DIM будет полностью совместим с ШИМ сигналом яркости. Вход сигнала включения также полностью ШИМ – совместим. Ток, выдаваемый драйвером на максимальной яркости будет приблизительно равен 320mA. Минимальная яркость зависит от скважности ШИМ сигнала. При распространенной частоте ШИМ 60Гц, минимальная яркость получиться около 36mA что соответствует регулировке яркости 1:9. Поскольку частота ШИМ сигнала в большинстве ноутбуков всего 60 Гц, отдельные люди могут замечать легкое мерцание. Если необходимо от него избавиться, то рекомендую взглянуть на следующую доработку, которая лишена этого недостатка.

 

Доработка 2. Убираем влияние ШИМ сигнала на изображение

 

Эта доработка несколько сложнее, по сравнению с предыдущей, но дает более заметные результаты.  При этой доработке удается полностью избавиться от модуляции яркости, повысить эффективность преобразования, расширить диапазон регулировки яркости вплоть до 1:100.

Ниже представлена схема с обозначенными доработками

Убираем влияние ШИМ сигнала на изображение

Для доработки потребуются

    Диод 1n4148 (или подобный в корпусе DO35*)

    Резистор 220kΩ 1% точность

    Резистор 12kΩ (SMD 0603)

    Резистор 330kΩ (SMD 0603)

   Конденсатор 25V 0,1µF (SMD 0603 MLCC)

    N-канальный MOSFET (ZVN2106A, 2N7000 или аналоги)

    Резистор 1.8** Ом (SMD 1206)

    Резистор 3.9** Ом (SMD 1206)

   

Если необходимо расширить диапазон регулировки яркости, то потребуется еще замена индуктивности L1 номинал которой выбирается исходя из требований по регулировке яркости. Зависимость диапазона яркости от индуктивности приведены в следующей таблице:   

Индуктивность, µH

Диапазон яркости

47

20:1

68

25:1

82

32:1

100

40:1

*Приведенная корпусировка элементов выбрана из соображений удобства монтажа и не является обязательным требованием.

**Номиналы резисторов выбирают соответственно длине и потребляемому LED подсветкой току. См. таблицу выше.

 

Последовательность действий при доработке

  1. Удалить конденсатор C5.
  2. Удалить резистор R3.
  3. Заменить токоизмерительные резисторы R4 и R7 на резисторы 1.8 Ом и 3.9 Ом (или на выбранные из таблицы).
  4. Если необходимо, то заменить индуктивность L1 - 47µH на большую по значению индуктивности. Это уменьшит минимально устанавливаемый выходной ток с 16 мА до 8 мА.
  5. Замените резистор R6 на резистор со значением 12кОм.
  6. Резистор 330 кОм припаять одной ножкой к 6 выводу микросхемы DF6113.
  7. Конденсатор 0,1µF припаять к 7 ножке микросхемы DF6113.
  8. Соединить свободные выводы резистора из пункта 6 и конденсатора из пункта 7 вместе.
  9. Припаяйте исток полевого транзистора к земляному выводу резистора R5.
  10. Припаяйте сток полевого транзистора к аноду диода 1N4148.
  11. Соедините катод диода 1N4148 в точке, образованной между резистором и конденсатором из пункта 8.
  12. Соедините вывод резистора 220 кОм с положительным выводом входного танталового конденсатора C6. Второй вывод соедините со стоком транзистора, это тот вывод, к которому мы ранее подключили анод диода 1N4148.
  13. Припаяйте затвор транзистора к левой контактной площадке резистора R3.

При использовании элементов для поверхностного монтажа будьте предельно внимательны чтобы не допустить короткого замыкания межу выводами.

Расположение деталей можно посмотреть на следующих картинках:

После такой модификации, ШИМ сигнал управления яркостью будет преобразовываться в аналоговый. Это позволит избавиться от возможного мерцания, приведет к более линейной регулировке яркости и расширит диапазон ее регулировки.

 

Заключение

Рассмотренный набор LED подсветки, который разработан специально для замены CCFL в экранах ноутбуков, имеет ряд преимуществ, которые с компенсируют некоторую сложность в установке. К достоинствам относят ценовую доступность набора, долговечность, улучшенную цветопередачу и т.д. Хотя приведенный дизайн платы драйвера LED подсветки и не реализует всех преимуществ микросхемы DF6113, но это можно легко исправить при наличии пары распространенных радиоэлементов и паяльника.

Набор для замены старой CCFL подсветки матрицы ноутбука на LED можно приобрести в нашем магазине по этой ссылке  http://ndft.com.ua/led-podsvetka-dlya-noutbuka-101-15

ndft.com.ua


Смотрите также