Светодиод и драйвер. Светодиод драйвер


Светодиод и драйвер

Здравствуйте. Перегорела у меня пара лед лампочек. Я решил их не восстанавливать, а в их корпусе установить нечто новое.Что из этого получилось? Смотрим. Вот такие лампочки сгорели И решил я заменить подложку с четырьмя 1 ваттными светодиодами на пятиваттный СОВ светодиод

Характеристики

eatures: High power super bright LED light. Type: COB LED. Power: 5W. Voltage: 18V DC. Current: 300mA. Luminous Flux: 350LM~400LM. Color Temperature: 6000-6500K. Emitting Color: Pure white. Diameter: 28mm. Lighting Angle: 180 degrees. Long service life LED. Great for making light sources for video camera, fish tank, decoration light. COB LED is less thermal resistance: Among different LED components such as high power LED, SMD, dip etc, COB LED is best in less thermal resistance and cooling. COB LED is better lighting effect: COB LED: No dizzy, no uncomfortable glare, no zebra strips. When it light up, it looks smooth and like a lighting panel. SMD, HP, 5mm LED: heavy dizzy, uncomfortable glare, heavy zebra strips. When it light up, it looks dots. A Milky or diffused cover can improve, but at the same time it cause light loss.

По размерам подложка один в один диаметр 28 мм. Думал старую подложку удалю, а новую вставлю и запитаю от старого драйвера. Ан нет.Чтобы достичь номинального тока для этих светодиодов нужно напряжение 18 вольт, что со старым драйвером сделать невозможно так как он рассчитан на питание 12 вольт. Поэтому пришлось докупить вот такой драйвер.

Характеристики

ONSTANT CURRENT Yes DRIVER TYPE Buck driver INPUT VOLTAGE 85-277 -volt OUTPUT CURRENT 300 mA OUTPUT VOLTAGE 12-25 V PCB HEIGHT (W/O COMPONENTS) 1.4 mm

Конечно по размерам драйвер не входит в предназначенное место, но это и не обязательно. Светильник потолочный а там места много.

Процесс замены занял несколько минут.И вот новая лампа готова Ваттметр показал 6,5 ватт, при КМ 0,6, падение напряжения на светодиоде 17,8 вольт, ток в характеристиках драйвера обещается постоянный 300 мА… Нагрев светодиода через 20 минут около 70 градусов.Показатели на уровне максимально допустимых. Стеклом закрывать не стал для лучшего охлаждения, да и свет более рассеяный По сравнению со старыми светодиодами яркость глобально не отличается, но свет рассеянный и более комфортный. Желательно конечно улучшить охлаждение, но это я уже ленюсь, что есть то есть. Да и в прихожей где она установлена она не горит постоянно. Посмотрим сколько проживет. По крайней мере за 2 месяца ничего не случилось

mysku.ru

Драйвер для светодиодов HV9910

ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ HV9910

    Немного ниже будет статья с расчетами элементов для светодиодного драйвера на основе ШИМ контроллера HV9910, а пока немного информации для размышления и личные впечатления... Покупались данные драйвера ЗДЕСЬ.    Драйвер весьма и весьма не плох, но имеет недостатки - рекомендованную довольно большую частоту и не возможность использовать его с транзисторами, у которых затворы имеют довольно большую запасенную энергию. При использовании IRF740 от Вишай Силиконикс драйвер сохраняет работоспособность до напряжения питания 100...130 вольт. При питании от сети управляющий вывод драйвера попросту отгорает, причем у меня даже убился светодиод на 100 Вт. Использование резистора в цепи затвора не помогло. Опыты по созданию самодельного драйвера на базе этой микросхемы пока отложены - транзисторов с легкими затворами у меня нет, да и в продаже они не частые гости.    Из доступных остается не такой уж большой выбор:     STD7NM50N - 550 V, 5 А, Qg 12nC, корпус TO-252. Есть такой же в корпусе ТО-220, именуется как STF7NM50N, но цена сильно завышена, видимо как раз из за популярности в светодиодных драйверах.    Мелькает схема в котрой используется IRFL014, но тут следует обратить внимание на то, что это просто взрыв-пакет:

 

Не правильное включение светодиодного драйвера от сети 220 В

    Дело в том, что рисовальщик данной схемы ОЧЕНЬ грубо ошибся - это повышающий преобразователь и надпись возле входного напряжения 8-300 В является ГРУБЕЙШЕЙ ОШИБКОЙ. При подаче напряжения выше 40 вольт первым естественно разорвет транзистор, поскольку IRFL014 имеет максимальное напряжение 60 вольт, следом рванут электролиты питания - 10 мкФ на 25 В как то маловато. Данная схема будет прекрасно работать на напряжениях не выше 20 вольт и яркость светодиодов не будет изменятся до снижения напряжения питания до 8 вольт. Данный вариант удобно использовать для создания фонариков с аккумуляторами на 12 вольт.    Самой правильной схемой является схема из даташита, поскольку использует даже некую пародию на компенсатор коэффициента мощности

 

Включение светодиодного драйвера от сети 220 В из даташита

    Так же выпускается, но найти в продаже демонстрационную плату не удалось. В ней используется HV9910 в корпусе с 16 ногами и данная плата обеспечивает ток 350 мА с напряжением от 10 до 40 вольт. Входное напржение от 90 до 265 вольт. Как раз именно в этой плате и используются транзисторы STD7NM50N.

Демо плата на драйвере HV9910

    Принципиальная схема этого демонстрационного драйвера с регулировкой яркости приведена ниже:

 

Включение светодиодного драйвера от сети 220 В

    Разумеется, что далеко не всем захочется заморачиваться с пайкой, да еще SMD компонентов, поэтому перед статьей с подробным описание работы HV9910 дам ссылочку на уже готовые драйвера:    ДРАЙВЕРЫ ДЛЯ СВЕТОДИОДОВ - отсортированы по количеству заказов.

   

УНИВЕРСАЛЬНАЯ ИМС ШИМ – КОНТРОЛЛЕРА HV9910ДЛЯ ПОСТРОЕНИЯ ДРАЙВЕРОВ СВЕРХЯРКИХ СВЕТОДИОДОВ

    Развитие источников света на полупроводниковых светодиодах привело к тому, что в настоящее время возникла потребность в устройствах - драйверах, обеспечивающих управление такими источниками освещения. И здесь, наряду с драйверами на дискретных компонентах начинают широко применяться драйверы, построенные на специализированных микросхемах [1]. Такие ИМС представляют собой, как правило, ШИМ-контроллеры, работающие как по «прямоходовому» алгоритму, так и по «обратноходовому» алгоритму.   Преимущества применения специализированных ИМС в драйверах светодиодных источников освещения очевидны - малые габариты, простота настройки, высокая надёжность, низкая себестоимость. Тенденция такова, что многие известные зарубежные электронные компании налаживают серийный выпуск специализированных ИМС драйверов для светодиодных источников освещения.   В этом отношении перспективной будет разработка отечественной ИМС ШИМ-контроллера для построения драйверов управления источниками освещения на сверхярких светодиодах.   Многие производители электронной компонентной базы, среди которых в первую очередь следует отметить Infineon, NXP Semiconductors, STMicroelectronics, Linear Technology, International Rectifier, Texas Instruments предлагают широкую и разнообразную номенклатуру специализированных ИМС ШИМ-контроллеров для светодиодных источников освещения Наряду с ними менее известные фирмы, такие как Melexis и Supertex предлагают не менее интересные решения в части специализированных ИМС ШИМ- контроллеров. В этом отношении следует отметить ИМС ШИМ-контроллера HV9910 фирмы Supertex [2]. Данная ИМС интересна тем, что может работать как в режиме «прямоходового» преобразователя, так и в режиме «обратноходового» преобразователя. обеспечивает построение драйвера с минимальным числом навесных компонентов и может работать в диапазоне питающих напряжений от 8,0 В до 450 В (рис. 1).    Драйверы, построенные на ИМС HV9910 или MLX10803 [3] существенно упрощают конструкцию и повышают надежность устройств управления светодиодными источниками света, а также обеспечивают их высокие технико-экономические показатели, что немаловажно в условиях жёсткой конкуренции на данном сегменте рынка. Таким образом, ИМС ШИМ-контроллера должна быть разработана так, чтобы обеспечивать построение схем драйверов светодиодов как в виде схемы без гальванической развязки (рис. 1), так и в виде схемы с гальванической развязкой светодиодов (рис. 2). В первом случае, в качестве управляющего элемента используется n-МОП транзистор, выполняющий функцию источника стабильного тока в цепи последовательно включенных светодиодов (рис. 1).

 

Включение светодиодного драйвера от сети 220 В

Рис.1 Типовая схема применения ИМС ШИМ-контроллера HV9910в схеме без гальванической развязки светодиодов

    Таким образом, при разработке ИМС ШИМ-контроллера, для обеспечения нормальной работы в течение всего срока службы должны быть учтены и реализованы многие факторы, а именно: БиКМОП технология с процессом жёсткой высоковольтной изоляции элементов (rugged high voltage junction isolated process), обеспечивающая работу ИМС с напряжением питания до 450 В (целесообразно). Возможны и другие варианты: стандартные КМОП и биполярные технологии, обеспечивающие максимальные пробивные напряжения до 60 В. С точки зрения системотехники и схемотехники в ИМС ШИМ-контроллера должны быть предусмотрены функции, обеспечивающие высокий к.п.д. и cos  драйвера, а также функции защиты - защиту от электростатического потенциала, защиту от короткого замыкания нагрузки и т. п. Также необходимо обеспечить возможность программирования некоторыхфункций, в частности функцию настройки внутреннего ШИМ-компаратора.

 

Включение светодиодного драйвера от сети 220 В

Рис.2 Типовая схема применения ИМС ШИМ-контроллера в схеме с гальванической развязкой светодиодов

    С учётом таких требований структурная схема ИМС ШИМ-контроллера для управления сверхяркими светодиодами представлена на рис. 3.   Питающее напряжение поступает на внутренний стабилизатор напряжения, формирующий внутренне стабильное напряжение 7 В и которое поступает на выход VDD. От этого напряжения запитывается внутренний стабилизатор напряжения, формирующий рабочее напряжение логики.

Структурная схема драйвера светодиодов HV9910Рис. 3. Структурная схема универсальной ИМС ШИМ-контроллера

    На ШИМ-компаратор, выполненный на двух дифференциальных каскадах DA1 и DA2, поступает управляющий сигнал SC (например, с датчика тока R6 – рис. 1), обеспечивающий управление скважностью выходного сигнала ШИМ-компаратора. Нижний порог работы ШИМ-компаратора задаётся напряжением 250 мВ, формируемым внутренним источником опорного напряжения. Верхний порог работы ШИМ-компаратора задаётся внешним напряжением по входу LD. С выхода ШИМ-компаратора импульсный сигнал с нормированной скважностью поступает на блок компенсации.   Поступающий на этот же блок сигнал внутреннего генератора, позволяет исключить влияние помех и паразитных колебаний. С выхода блока компенсаций импульсный сигнал поступает на бистабильную RS-ячейку DD2.   С её выхода Q через элемент 2И-НЕ DD3, сигнал через буферный каскад DD4 поступает на выход GATE для управления током мощного внешнего n-МОП транзистора. Логический элемент DD3 служит для того, чтобы через вход PWMD можно было использовать внешний ШИМ-сигнал.   Данный вариант реализации ИМС ШИМ-контроллера позволяет эффективно управлять внешним n-МОП транзистором с частотой переключения до 300 кГц. При этом частота задаётся внешним резистором, подключаемым к выводу RT в соответствии со следующим соотношением:

fOSC(кГц) = 25000 / (RT(кОм) + 22).

    В варианте реализации драйвера без гальванической развязки светодиодов (рисунок 1), цепь последовательно включенных светодиодов управляется током, а не напряжением, что позволяет обеспечивать стабильную яркость свечения светодиодов и повышенную надёжность их работы. Величина индуктивности дросселя L1 может быть рассчитана при помощи соотношения.

L = (UCC × ULED) × TON / (0,3 × ILED)

    где UCC – напряжение питания ИМС, ULED – падение напряжения на цепи последовательно включенных светодиодах, ILED – ток светодиодов (номинальное значение – 350 мА), TON – время нахождения внешнего n-МОП транзистора в открытом состоянии и рассчитывается в соответствии с формулой:

TON = D / fOSC

    где fOSC – частота внутреннего генератора ИМС, D – коэффициент, равный отношению падения напряжения на цепи последовательно включенных светодиодах к напряжению питания ИМС:

D = ULED / UCC

    Подключаемый к выводу GATE внешний n-МОП транзистор должен иметь время переключения не более 25 нс при частоте работы ШИМ менее 100 кГц и не более 15 нс при частоте работы ШИМ более 100 кГц. Вход PWMD может служить как для управления защитой ИМС ШИМ- контроллера, так и для маскирования внутреннего ШИМ-сигнала внешним сигналом. При нулевом уровне сигнала на входе PWMD, на выходе GATE, будет также присутствовать сигнал нулевого уровня. При высоком уровне сигнала на входе PWMD, на выходе GATE ИМС установится сигнал, формируемый внутренним ШИМ-компаратором.   Данная ИМС ШИМ-контроллера может быть изготовлена на базе отечественных технологий, таких как стандртная эпитаксиально-планарная технология, а также БиКМОП технология, имеющаяся в ОАО «Микрон». (Наверное мечты автора статьи).    Данная ИМС ШИМ-контроллера может быть изготовлена в корпусе DIP- 8 или SOIC-8. Кроме применения в драйверах светодиодов, эта ИМС позволяет разрабатывать схемы импульсных источников питания и линейных стабилизаторов напряжения.

Сурайкин Александр Иванович, к.т.н., доцент кафедры микроэлектроники

   

    Разумеется, что 1 А для светодиодов может быть маловато, поэтому немного поразмышляв и покопавшись в своих загажниках был собран стабилизатор тока для мощных светодиодов, пичем мощность драйвера зависит только от габаритной мощности трансформатора и максимальных токов силовых ключей и может достигать 500-600 Вт. Принципиальная схема мощного драйвера для светодиодов приведена ниже:

 

Схема мощного драйвера для светодиодов

    Использование трансформатора тока тут не совсем случайно - немного позже будет опробовано мощное зарядной устройство, работающее по такому же принципу. Здесь же просто отработка технологии и схемотехники. Данный драйвер показал весьма не плохие результаты, правда запас по напряжению я сделал слишком больши и пришлось немного повозится с дросселем расеивания.    Если нужен не очень мощный драйвер, то можно отказаться от трансформатора тока, воспользовавшись обычным измерительным резистором, работающим на транзистор управления оптроном:

 

Схема мощного драйвера для светодиодов

    Разумеется, что приведенной информации для сборки не достаточно, поэтому чтобы не повторяться и понять как изготовить оптрон и какие компоненты можно использовать можно посмотреть видео на эту тему:

   

  Архив на схемы и плату драйвера на 100 и более Вт ЗДЕСЬ.

   

Адрес администрации сайта: [email protected]   

 

soundbarrel.ru

Драйвер для светодиодов своими руками

Светодиодный светильник своими руками

Изготовить светодиодный светильник своими руками несложно - достаточно свободного вечера, кое-каких компонентов и желания. Самый оптимальный вариант для начинающего светодиодника - переделка имеющегося светильника. Возможно, у вас в доме есть бра, торшер или другой источник света на базе лампы накаливания - из них вполне возможно изготовить светодиодный светильник, радующий глаз и экономящий электроэнергию .

Вариаций на тему модернизации может быть множество. Рассмотрим наиболее оптимальные.

Светодиоды

Для начала стоит определиться с тем, какие светодиоды лучше использовать. Если выбирать между мощными и маломощными - первые лучше с точки зрения трудоемкости. Чтобы заменить один мощный 1 Вт светодиод, понадобится 15-20 маломощных 5 мм или smd светодиодов. Соответственно, пайки с маломощными гораздо больше. Остановимся на мощных. Обычно они делятся на два вида - выводные и поверхностного монтажа. Для облегчения жизни лучше использовать выводные. Мощность светодиода лучше выбирать не более 1 Вт.

Драйвер

Чтобы светодиоды жили долго и счастливо, им нужен хороший источник питания (драйвер тока). Драйверы бывают в корпусе и без корпуса, с гальванической развязкой и без таковой. Если мы говорим о переделке светильника, то лучше выбрать вариант без корпуса и с гальванической развязкой.

Вариант без корпуса хорош по двум причинам. Первая - он меньше размером, чем такой же в корпусе. Вторая - он себя комфортней чувствует, так как меньше нагревается. Минус - сложнее крепить.

Гальваническая развязка, если не вдаваться в тонкости, нужна для безопасности. Если драйвер с гальванической развязкой - вас не стукнет током при прикосновении к выводу работающего светодиода. Если без развязки - стукнет. Стало быть, выберем драйвер без корпуса и с гальванической развязкой.

Самые распространенные типы светодиодов - 1 и 3 Вт. Для них существуют драйвера с током 300-350 мА (для 1 Вт светодиодов) и 600-700 мА (для 3 Вт светодиодов). Обычно для драйвера указано минимальное и максимальное количество светодиодов, которых к нему можно подключить, например 5-7х1 Вт . Если этого нет - нужно смотреть на выходное напряжение драйвера. Один белый светодиод имеет напряжение питания около 3,3 вольта. Значит, если у драйвера указано выходное напряжение 10 вольт - он потянет три светодиода, включенных последовательно.

Драйвер может быть с фильтром электромагнитных помех или без него. Если фильтра нет - возможно, драйвер будет давать помехи на телевизор и радиоприемник. Если драйвер маломощный (до 10 Вт) - вряд ли. Если мощный - наверняка.

Радиатор

Для успешных долгих лет светодиода радиатор не менее важен, чем драйвер. Ему нужно быть алюминиевым. Алюминия вокруг полно - от карнизов до сковородок. Все это - источник радиаторов. На каждый одноваттный светодиод нужно кусок алюминия 50х50 мм, тощиной около 1 мм. Кусок может быть меньше, если его изогнуть. Если вы возьмете кусок 25х25 мм и толщиной 5 мм - нужного эффекта не получите. Чтобы рассеивать тепло, нужна площадь, а не толщина. Обратите внимание - компьютерные кулеры рассчитаны на работу с вентилятором. Без него они отводят тепло от светодиодов очень плохо.

Готовим светодиодный модуль

В качестве практического задания изготовим простой светодиодный светильник. Нам понадобятся. три светодиода 1 Вт. драйвер 3х1 Вт. двухсторонний теплопроводящий скотч. радиатор (например, кусок П-образного профиля толщиной 1 мм и длиной 6-8 см).

Теплопроводящий скотч, как следует из его названия, может проводить тепло. Поэтому обычный двустороннй скотч из магазина хозтоваров не подойдет. Отрезаем полоску скотча шириной 6-7 мм.

Протираем радиатор ваткой. смоченной спиртом, то есть обезжириваем. Водка тоже подойдет. Донышки светодиодов также нужно обезжирить. Ацетон для этого использовать нежелательно - пластиковая линза светодиода может помутнеть.

Наклеиваем скотч на радиатор. Затем размечаем радиатор, чтобы установить светодиоды ровно.

Устанавливаем светодиоды на скотч. При этом соблюдаем полярность - все светодиоды должны быть развернуты одинаково так, чтобы плюс одного светодиода смотрел на минус соседнего. Слегка прижимаем их для лучшего контакта. После этого наносим олово на выводы светодиодов для облегчения дальнейшей пайки. Если у вас есть опасение, что скотч при этом может прогореть - просто приподнимите выводы светодиодов так, чтобы они не касались скотча. Корпус светодиода при этом нужно придерживать пальцем, чтобы от скотча не оторвался. Впрочем, можно отогнуть выводы заранее.

Соединяем светодиоды между собой. Для этого вполне достаточно жилки от любого многожильного провода.

Припаиваем драйвер. Если провода недостаточно длинные, их можно удлинить любым проводом, который есть под рукой, даже телефонным.

Проверяем полученное светодиодное изделие

Лучше оставить его на пару часов включенным. После этого желательно потрогать обратную сторону радиатора - прямо напротив светодиодов. Если палец терпит - все в порядке.

Самодельный светодиодный светильник готов. Время изготовления - 5 минут с перекурами :). Теперь вы можете вставить его в любой подходящий корпус. Разумеется, можно сделать и более мощный светильник, только диодов нужно побольше и драйвер помощнее, а принцип останется тем же. Подобная методика подойдет как для изготовления одиночного светильника, так и для мелкосерийного производства. К примеру, можно сэкономить значительные средства, установив подобный источник света в имеющиеся подъездные светильники или светильники на производстве силами местного электрика.

Если у вас есть вопросы по подключению светодиодов к драйверу, желательно почитать статью Драйвер или блок питания .

Юрий Рубан, г.

Драйвер для светодиода своими руками на микросхеме MAX756

Эта статья поможет всем желающим самостоятельно  изготовить своими руками драйвер для светодиода на микросхеме MAX756 и, попутно, понять некоторые особенности питания светодиодов.

Особенность светодиода в роли нагрузки состоит в том, что он, не как лампа накаливания. У него нелинейная вольт-амперная характеристика питания. Поэтому нерационально питать его напрямую от батареи напряжением 4,5В, поскольку одна треть энергии будет истрачена напрасно, расходуясь на гасящем резисторе.

Чтобы светодиод обеспечить питанием от одной или двух батареек, необходим драйвер, который повышает выходное напряжение до нужной величины и поддерживающий его на стабильном уровне при неизбежной разрядке батареи.

Достаточно простой драйвер для светодиода можно собрать по следующей схеме:

За основу взята микросхема МАХ756 фирмы #171 Maxim#187 , она специально создана для переносных радиоэлектронных приборов с независимым питанием. Драйвер продолжает работать даже  при уменьшении питающего напряжения до 0,7 В. По необходимости выходное напряжение драйвера можно установить равным 3,3В или 5 В при токе нагрузки 300мА или 200 мА соответственно. Коэффициент полезного действия при максимальной нагрузке составляет более 87 %.

Принцип работы драйвера светодиода

Цикл работы драйвера на микросхеме MAX756 можно поделить на два этапа, а именно:

Первый этап

Внутренний транзистор в данный момент открыт и через дроссель L1 протекает линейно-нарастающий ток. В электромагнитном поле дросселя накапливается энергия. Конденсатор C3 постепенно разряжается, отдавая ток светодиодам. Продолжительность фазы составляет примерно 5 мкс. Но эта фаза может быть прекращена досрочно. Это произойдет в том случае, если максимально допустимое значение ток стока транзистора превысит 1 А.

Второй этап

Транзистор на этом этапе закрыт. Протекающий ток от дросселя L1 через диод VD1  заряжает конденсатор C3, возмещая его разрядку на первом этапе. При увеличении напряжения на конденсаторе до определенного уровня данный этап заканчивается.

С постепенным понижением входного напряжения и увеличением тока нагрузки, микросхема MAX756 переключается в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в данном случае не стабилизировано, оно уменьшается, оставаясь по возможности максимальным. От того какое фактическое напряжение элементов питания и тока потребления светодиодами, частота повторения данного цикла меняется в очень широких пределах.

В   роли светоизлучателей в драйвере применены четыре светодиода L-53PWC #171 Kingbright#187 . Так как при токе 15 мА прямое падение на светодиодах составляет около 3,1В, излишние 0,2В приходится  гасить, включенным последовательно  резистором R1. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

На заметку: используя стабилизатор напряжения LM2941 можно сделать диммер для светодиодной лампы .

 Детали драйвера

Электролитические  конденсаторы С1 и C3 #8212 импортные танталовы. У них малое сопротивление которое положительно влияет на КПД устройства. Конденсатор С2 #8212 К10-176 или любой подходящий керамический. Диод Шотки 1N5817  возможно поменять на SM5817. Дроссель L1 можно изготовить своими руками. Он намотан проводом ПЭВ-2 0,28 на сердечник от сетевого фильтра и содержит около 35 витков. Сердечник представляет собой  кольцо размером К10x4x5 из   магнитной проницаемостью 60. Так же можно применить дроссели индуктивностью около 40 #8212 100 мкГн и допустимым током более 1А. Неплохо было бы, чтобы активное сопротивление   дросселя было меньше 0,1 Ом, в противном случае КПД устройства значительно снизится.

Потенциала данного драйвера на MAX756 для светодиода был проверен с применением регулируемого источника питания от 0 до 3В. Ниже представлена измеренная зависимость выходного напряжения от входного.

Преобразователь продолжал функционировать даже при уменьшении напряжения батареи до 0,4В, выдавая на выходе  2,6 В при токе 8 мА (вместо исходных 105 мА). Свечение светодиодов было достаточно заметным. Однако после  повторного включения драйвера он начинал работать только при натяжении питания более 0,7В. Замеренный КПД при новых элементах питания составил около 87 %.

LED драйвер схема

На первой схеме представлен простой, мощный и дешевый светодиодный драйвер, который способен собрать даже начинающий радиолюбитель. Эта схема led драйвера идеально сочетается с мощными и сверхяркими светодиодами, и может быть применена для любого их колличества, с любым видом питания.

В нашей разработке, мы взяли LED элемент мощностью 1 ватт, но можно изменить радиокомпоненты Led драйвера и использовать светодиоды и большей мощности.

Параметры схемы драйвера:

    входное напряжение: 2В до 18В выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе) ток: 20 ампер

В качестве источника питания я применил готовый трансформаторный блок питания на 5 Вольт, т.к для питания одного светодиода его вполне хватит. Радиатор на мощный транзистор не нужен, т.к ток около 200 мА. Поэтому резистор R3 будет около 2 кОм (I=0,5/R3). Он является установочным и закрывает транзистор Q2, если течет повышенный ток

Транзистор FQP50N06L в соответствии с паспортными данными работает только до 18 Вольт, если требуется больше вам следует воспользоваться справочником по транзисторам .

Т.к данная схема очень проста собрал ее без печатной платы с помощью навесного монтажа. Следует также сказать о назначении транзисторов в этой конструкции. FQP50N06L применен в качестве переменного резистора, а 2N5088BU в роли токового датчика. Он также задает обратную связь, которая следит за параметрами тока и держит его в заданных пределах.

Простой драйвер для питания светодиодов в автомобиле

Эта простая схемка отлично зарекомендовала себя в индикации на приборной панели авто, благодоря своей простоте и надежности.

Эту схему можно использовать для запитки светодиодов как в автомобиле и не только в нем. Данная схема ограничивает ток и обеспечивает нормальную работу светодиода. Этот драйвер может запитать светодиоды мощностью 0,2-5 ватт от 9-25 Вольт благодоря применению микросхемы стабилизатора напряжения LM317.

Сопротивление резистора можно определить по следующей формуле R = 1.25/I, где I — ток светодиода в Амперах. Если вы хлтите применить мощные светодиоды, микросхему LM317 обязательно установите на теплоотвод.

Для стабильной работы схемы Led драйвера на LM317, входное напряжение должно немного превышать напряжение питания светодиода примерно на 2 вольта. Диапазон ограничения выходного тока составляет 0,01А…1,5А и с выходным напряжением до 35 вольт. При необходимости схему можно подключить к самодельному блоку питания .

За основу схемы взята микросхема МАХ756, она проектировалась для переносных устройств с независимым питанием. Драйвер продолжает работать даже при понижении питающего напряжения до 0,7 В. Если возникнет необходимость выходное напряжение драйвера можно задать от3 до 5 вольт при токе нагрузки до 300мА. КПД при максимальной нагрузке более 87 %.

Работы драйвера на микросхеме MAX756 можно условно поделить на два цикла, а именно:

Первый: Внутренний транзистор микросхеме в данный момент открыт и через дроссель течет линейно-нарастающий ток. В электромагнитном поле дросселя копится энергия. Конденсатор C3 потихоньку разряжается и отдает ток светодиодам. Продолжительность цикла около 5 мкс. Но этот цикл может быть завершен досрочно, в том случае, если максимально допустимый ток стока транзистора возрастет более 1 А.

Второй: Транзистор в этом цикле заперт. Ток от дросселя через диод заряжает конденсатор C3, взамен того, что он потерял в первом цикле. С увеличением напряжения на конденсаторе до некоторого уровня данный этап цикла финиширует.

Микросхема MAX756 переходит в режим с постоянной продолжительностью фазы (соответственно 5 мкс и 1 мкс соответственно). Выходное напряжение в этом случае не стабилизировано, оно снижается, но остается по возможности максимально возможным.

К схеме подключены четыре светодиода типа L-53PWC Kingbright . Так как при токе 15 мА прямое падение на светодиодах будет 3,1 вольта, лишние 0,2 вольта погасит резистор R1. По мере прогрева светодиодов, падение напряжения на них снижается, и резистор R1 в каком-то роде стабилизирует ток потребления светодиодов и их яркость свечения.

Дроссель можно взять самодельный, намотав проводом ПЭВ-2 0,28 на сердечник (кольцо размером К10x4x5 из магнитной проницаемостью 60) от сетевого фильтра 35 витков. Так же можно взять и готовые дроссели с индуктивностью от 40 до 100 мкГн и рассчитанные на ток более 1А

Источники:

www.sferatd.ru


Смотрите также